Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)
a , \(\frac{7}{8}:\frac{1}{6}+\frac{7}{8}.\frac{-7}{18}\)
= \(\frac{21}{4}+\frac{-49}{144}=\frac{707}{144}\)
b, -1 : (-5) + \(\frac{1}{15}-\frac{-1}{15}\)
= \(\frac{1}{5}+0=\frac{1}{5}\)
c, \(\frac{9}{10}-\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(\frac{9}{10}-\frac{10-9}{10.9}-\frac{9-8}{9.8}-\frac{8-7}{8.7}-\frac{7-6}{7.6}-\frac{6-5}{6.5}-\frac{5-4}{5.4}-\frac{4-3}{4.3}-\frac{3-2}{3.2}.\frac{2-1}{2.1}\)
= \(\frac{9}{10}-1-\frac{1}{10}-1-\frac{1}{9}-1-\frac{1}{8}-1-\frac{1}{7}-1-\frac{1}{6}-1-\frac{1}{5}-1-\frac{1}{4}-1-\frac{1}{3}-1-\frac{1}{2}\)
= \(\frac{9}{10}-\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+...+\frac{1}{2}\right)\)
= \(\frac{9}{10}-9-1,928=\frac{9}{10}-7,071=-6.171\)
ta có \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)
\(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)
\(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2005}\)