Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\)
Ta có:
\(A=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\right)+\frac{1}{a^3b^3c^3}\)
Áp dụng BĐT Côsi, ta có:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{abc}\)
\(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\ge\frac{3}{a^2b^2c^2}\)
Thay vào A, ta được \(A\ge1+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\)
Lại áp dụng BĐT Côsi ta có:
\(abc\le\left(\frac{a+b+c}{3}\right)^3=\left(\frac{6}{3}\right)^3=8\)hay\(\frac{1}{abc}\ge\frac{1}{8}\)
Suy ra:\(A\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)
Đẳng thức xảy ra khi và chỉ khi:\(\hept{\begin{cases}a+b+c=6\\a=b=c\end{cases}\Leftrightarrow}a=b=c=2\)
Cách ngắn gọn:
\(1+\frac{1}{a^3}=\frac{1}{8}+\frac{1}{8}+...+\frac{1}{a^3}\ge9\sqrt[9]{\frac{1}{8^8.a^3}}=9\sqrt[9]{\frac{1}{8^8}}.\sqrt[3]{\frac{1}{a}}\)
Tương tự với b, c
\(\Rightarrow\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\ge\left(9\sqrt[9]{\frac{1}{8^8}}\right)^3.\sqrt[3]{\frac{1}{abc}}\ge\frac{729}{256}.\sqrt[3]{\frac{1}{\left(\frac{a+b+c}{3}\right)^3}}=\frac{729}{512}\)
Dấu "=" xảy ra khi a = b = c = 2.
Ta có:
+ 3√512=3√83=8;5123=833=8;
+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;
+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;
+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;
+ 3√−0,008=3√(−0,2)3=−0,2.
Đáp án:
( lần lượt như trên nhé!!! Ko viết lại đề)
8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
∛512 = ∛83 = 8
∛-729 = ∛(-9)3 = -9
∛0,064 = ∛(0,4)3 = 0,4
∛-0,216 = ∛(-0,6)3 = -0,6
∛-0,008 = ∛(-0,2)3 = -0,2
Chú ý: Bạn có thể tìm các căn bậc ba ở trên bằng máy tính bỏ túi.
(Ghi nhớ: Các bạn nên ghi nhớ một số lũy thừa bậc 3 của các số < 10:
23 = 8; 33 = 27; 43 = 64; 53 = 125;
63 = 216; 73 = 343; 83 = 512; 93 = 729)
Chọn đáp án C.
Ta có: