Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(3^0+3^1+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40\left(1+...+3^8\right)⋮40\)
vậy.......
Theo đề ta có:
\(3^0+3^1+3^2+3^3+3^4+...+3^{11}\)
= \(\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
= \(1\cdot\left(1+3+3^2+3^3\right)+3^4\cdot\left(1+3+3^2+3^3\right)+3^8\cdot\left(1+3+3^2+3^3\right)\)
= \(1\cdot40+3^4\cdot40+3^8\cdot40\)\(⋮\)\(40\)
\(\text{ Nên }A\)\(⋮\)\(40\)
\(\text{Vậy }A⋮40\)
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
A=2^1(1+2)+2^3*(2+1)+2^5(2+1)+2^7*(2+1)+2^9*(2+1)=3*(2+2^3+2^5+2^7+2^9) chia hết cho 3
A = 2 + 22 + 23 + ..... + 29 + 210
A = (2 + 22) + (23 + 24) + ... + (29 + 210)
A = (2.1 + 2.2) + (23.1 + 23.2) + ......+(29.1 + 29.2)
A = 2.(1+2) + 23.(1+2) + ..... + 29.(1+2)
A = 2.3 + 23.3 + ...... + 29.3
A = 3.(2+23+.....+29)
Vậy A chia hết cho 3
31 + 32 + 33 + ... + 32012
= (31 + 32 + 33) + (34 + 35 + 36) + ... + (32010 + 32011 + 32012)
= (31 + 32 + 33) + 33.(31 + 32 + 33) + ... + 32009.(31 + 32 + 33)
= 120 + 33.120 + ... + 32009.120
= 120.(1 + 33 + ... + 32009) chia hết cho 120
Đặt A = 3^1+3^2+3^3+......+3^2012
A=(3^1+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^2019+3^2010+3^2011+3^2012)
A=3^1(1+119) + 3^5(1+119) + ... +3^2009(1+119)
A= 120 ( 3^1 + 3^5 +.... + 3^2009)
=> A chia hết cho 120