K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)

=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)

=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)  

Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20

6 tháng 5 2021

bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ

21 tháng 4 2017

* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19  ( vì ta cộng với 19 số 1 nên phải trừ 19 )
\(\frac{20}{1}\)+  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)- 19
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+   \(\frac{20}{18}\)+  \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+ ...+   \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)+  \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+...+  \(\frac{1}{17}\)+  \(\frac{1}{18}\)+  \(\frac{1}{19}\)+  \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)=  \(\frac{1}{20}\)

12 tháng 5 2019

Phùng Quang Thịnh biến đổi sai 1 chỗ kìa 

-19 = \(\frac{20}{20}-20\)chứ mà bạn

21 tháng 5 2016

Mẫu số=19/1+18/2+17/3+...+2/18+1/19

=(1+1+1+...+1)+(18/2+17/3+...+2/18+1/19)

(19 số 1)                      (18 phân số)

=(1+18/2)+(1+17/3)+...+(1+2/18)+(1+1/19)+1

=20/2+20/3+...+20/18+20/19+20/20

=20.(1/2+1/3+...+1/18+1/19+1/20)

Phân số trên=1/20

3 tháng 5 2017

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)

\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)

Thế lại bài toán ta được

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

3 tháng 5 2017

Ta có

\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)

Thế vào ta có:

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

29 tháng 7 2015

Xét tử:

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{19}{1}\)

\(\left(1+\frac{1}{19}\right)+\left(1+\frac{2}{18}\right)+\left(1+\frac{3}{17}\right)+.....+\left(1+\frac{18}{2}\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+.....+\frac{20}{2}+1\)

\(\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{2}\)

\(20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)\)

Thay vào, ta có:

D = \(\frac{20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)

=> D = 20