Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+99}+\frac{1}{50}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{99.100}{2}}+\frac{1}{50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}\)
\(=1\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+99}+\frac{1}{50}\)
\(=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{4950}+\frac{1}{50}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}+\frac{1}{50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)
\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)
\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{50^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}....\frac{50^2-1}{50^2}\)
\(=-\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(50-1\right)\left(50+1\right)}{50^2}\)
\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50}\)
\(=-\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4...50}\)
\(=-\frac{1}{50}.\frac{51}{2}=-\frac{51}{100}\)
Ta có: \(\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times\left(1-\frac{1}{4^2}\right)\times...\times\left(1-\frac{1}{50^2}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{2499}{2500}\)
\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{49.51}{50.50}\)
\(=\frac{1.2.3.....49}{2.3.4.....50}\times\frac{3.4.5.....51}{2.3.4.....50}\)
\(=\frac{1}{50}\times\frac{51}{2}\)
\(=\frac{51}{100}\)