Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( m + n )/n = 7 x m/n .
m/n + n/n = 7 x m/n .
m/n + 1 = 7 x m/n .
1 = 6 x m/n ( cùng bớt cho m/n ) .
Vậy m/n = 1/6 .
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Theo đề bài: \(\frac{m+n}{n}=7\times\frac{m}{n}\) => \(\frac{m+n}{n}=\frac{7\times m}{n}\) => m + n = m x 7
=> n = m x 6 => n : m = 6 Hay \(\frac{n}{m}=6\) => \(\frac{m}{n}=\frac{1}{6}\)
vậy m/n = 1/6
Gọi d là ước chung của n+1 và n+2
Khi đó:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+1)-(n+2) chia hết cho d
=>1 chia hết cho d
=>n+1 và n+2 là 2 số nguyên tố cùng nhau
Vậy phân số n+1/n+2 là phân số tối giản
Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)
\(\Rightarrow n+1\)chia hết cho \(d\)
\(\Rightarrow n+2\)chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)
\(\Rightarrow-1\) chia hết cho \(d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow d=\int^1_{-1}\)
Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.
Ta có \(\frac{m+n}{n}\) = \(\frac{m}{n}\) + \(\frac{n}{n}\) = \(\frac{m}{n}\) + 1
Lại có \(\frac{m+n}{n}\)gấp 7 lần \(\frac{m}{n}\)
Nên \(\frac{m+n}{n}\)= 7 x \(\frac{m}{n}\)
Theo phần chứng minh trên ta có : \(\frac{m}{n}\)+ 1 = 7 x \(\frac{m}{n}\)
mà 7 x \(\frac{m}{n}\) = 6 x \(\frac{m}{n}\)+ \(\frac{m}{n}\)
nên ta có \(\frac{m}{n}\)+ 1 = 6 x \(\frac{m}{n}\)+\(\frac{m}{n}\)
trừ đi ở mỗi vế ta có : 1 = \(\frac{m}{n}\)x 6
hay : 1/6 = \(\frac{m}{n}\)
Vậy \(\frac{m}{n}\)= \(\frac{1}{6}\)
Ta có : \(\frac{m+n}{n}=\frac{m}{n}+\frac{n}{n}+\frac{m}{n}+1\)
Vì \(\frac{m+n}{n}\)gấp 7 lần \(\frac{m}{n}\)
\(\Rightarrow\left(\frac{m}{n}+1\right):7=\frac{m}{n}\)
\(\Rightarrow\frac{m}{n}+1=6\times\frac{m}{n}+\frac{m}{n}\)
\(\Rightarrow1=6\times\frac{m}{n}\)
\(\Rightarrow\frac{m}{n}=\frac{1}{6}\)