Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a+b=c+d=d+e suy ra e=a+b+c-d
Vì tích ab là số liền sau của cd và cd là số liền sau của de suy ra ab-cd-de=2
Mũi tên 2 chiều : ab-cd-d.e(a+b+c+d-e)=2
Mũi tên 2 chiều : ab-ac-bc-cd+c mũ 2 =2
Mũi tên 2 chiều : ab.(c-d)-d.(c-d)
Mũi tên 2 chiều : (c-d).(b-d)=2
Vậy suy ra : a, b, c, d thuộc Z biết a+b+c+d+e=0 và a+b=c+d=d+e=2
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)