Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(A=16-|x-2|-|y+0,5|\)
Vì \(\hept{\begin{cases}-|x-2|\le0;\forall x\\-|y+0,5|\le0;\forall x\end{cases}}\)
\(\Rightarrow-|x-2|-|y+0,5|\le0;\forall x,y\)
\(\Rightarrow16-|x-2|-|y+0,5|\le16-0;\forall x,y\)
Hay\(A\le16;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}|x-2|=0\\|y+0,5|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-0,5\end{cases}}\)
Vậy MAX A=16 \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-0,5\end{cases}}\)
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
(y - 0,5)4 + (y + 0,5)4 = 1
<=> (y - 0,5)4 + (y - 0,5 + 1)4 = 1
Đặt y - 0,5 = a
<=> a4 + (a + 1)4 = 1
<=> a4 + a4 + 4a3 + 6a2 + 4a + 1 = 1
<=> 2a4 + 4a3 + 6a2 + 4a = 0
<=> 2a(a3 + 2a2 + 3a + 2) = 0
<=> a(a3 + a2 + a2 + a + 2a + 2) = 0
<=> a(a + 1)(a2 + a + 2) = 0
<=> a(a + 1) = 0 (vì a2 + a + 2 = (a2 + a + 1/4) + 7/4 = (a + 1/2)2 + 7/4 > 0)
<=> \(\orbr{\begin{cases}a=0\\a+1=0\end{cases}}\) <=> \(\orbr{\begin{cases}a=0\\a=-1\end{cases}}\)
Với a = 0 => y - 0,5 = 0 <=> y = 0,5
Với a = -1 => y - 0,5 = -1 <=> y = -0,5
Vậy S = {0,5; -0,5}