Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(0,31:0,91=x:\frac{49}{3}\)
=> \(\frac{0,31}{0,91}=\frac{3x}{49}\)
=> \(3x=\frac{3}{7}.49\)
=> \(3x=21\)
=> \(x=21:3=7\)
b) \(6,88:x=12:27\)
=> \(\frac{6,88}{x}=\frac{12}{27}\)
=> \(x=6,88:\frac{4}{9}\)
=> \(x=15,48\)
c) \(\frac{25}{3}:\frac{35}{3}=13:2x\)
=> \(\frac{13}{2x}=\frac{5}{7}\)
=> \(2x=13:\frac{5}{7}\)
=> \(2x=\frac{91}{5}\)
=> \(x=\frac{91}{5}:2=\frac{91}{10}\)
d) \(\left(x-1\right):24,5=5:8,75\)
=> \(\frac{x-1}{24,5}=\frac{5}{8,75}\)
=> \(x-1=\frac{4}{7}.24,5\)
=> \(x-1=14\)
=> \(x=14+1=15\)
2a) Ta có: \(\frac{x}{y}=\frac{5}{7}\) => \(\frac{x}{5}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)
=> \(\hept{\begin{cases}\frac{x}{5}=0,34\\\frac{y}{7}=0,34\end{cases}}\) => \(\hept{\begin{cases}x=0,34.5=1,7\\y=0,34.7=2,38\end{cases}}\)
Vậy x = 1,7; y = 2,38
b) Ta có: \(\frac{x}{y}=-\frac{3}{7}\) => \(\frac{x}{-3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=\frac{-40}{-10}=4\)
=> \(\hept{\begin{cases}\frac{x}{-3}=4\\\frac{y}{7}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.\left(-3\right)=-12\\y=4.7=28\end{cases}}\)
vậy x = -12; y = 28
c) Ta có: \(\frac{x}{y}=\frac{3}{5}\) => \(\frac{x}{3}=\frac{y}{5}\)
Đặt : \(\frac{x}{3}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=5k\end{cases}}\) (*)
Khi đó, ta có: xy = 1215
hay 3k. 5k = 1215
=> 15k2 = 1215
=> k2 = 1215 : 15 = 81
=> k = \(\pm\)9
Thay k = \(\pm\)9 vào (*), ta được:
+) x = 3. (\(\pm\)9) = \(\pm\)27
+) y = 5. (\(\pm\)9) = \(\pm\)45
Vậy ...
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
1a) Đặt : \(\frac{x}{3}=\frac{y}{12}=\frac{z}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\) (*)
Khi đó, ta có: xyz = 22,5
=> 3k . 12k.5k = 22,5
=> 180k3 = 22,5
=> k3 = 22,5 : 180
=> k3 = 0,125
=> k3 = (0,5)3
=> k = 0,5
Thay k = 0,5 vào (*), ta được :
+) x = 3. 0,5 = 1,5
+ y = 12. 0,5 = 6
+) z = 5. 0,5 = 2,5
Vậy ...
b) Ta có: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{49}=4\\\frac{z^2}{25}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.49=196\\z^2=4.25=100\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm14\\z=\pm10\end{cases}}\)
Vậy ...
1.
a) Có x/3 = y/12 = z/5
=> (x/3)3 = x/3 . y/12 . z/5 = xyz / 3.12.5 = 22,5 / 180 ( vì xyz=22,5)
=> x3/27 = 0,125
=> x3 = 0,125 . 27
=> x = 1,5
Có x/3 = z/5
=> 1,5 /3 = z/5 (vì x=1,5)
=> z= 1,5 /3 .5 = 2,5
Có xyz= 22,5
=> 1,5 . 2,5 . y = 22,5
=> y= 22,5 / (1,5 . 2,5) = 6
Vậy x=1,5 ; y=6 ; z=2,5
a) Có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180^o}{9}=20\)
=> \(\left\{{}\begin{matrix}x=40^o\\y=60^o\\z=80^o\end{matrix}\right.\)
b) Có x = 2y = 3z
=> \(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{6+3+2}=\dfrac{180^o}{11}\)
=> \(\left\{{}\begin{matrix}x=98^o10'\\y=49^o5'\\z=32^o43'\end{matrix}\right.\)
a)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
x=400
y=60 độ
z=80 độ
vậy ..........