K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)

Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)

10 tháng 11 2020

pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0

    ⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0

    ⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0

Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Vậy 

29 tháng 7 2015

 

9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2.(z+1)2=0

<=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

5 tháng 10 2017

(9x2-18x+9)+(y2-6y+9)+2(z2+2z+1)=0\(\Rightarrow\)(3x-3)2+(y-3)2+2(z+1)2=0\(\Rightarrow\hept{\begin{cases}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

NV
1 tháng 11 2020

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

7 tháng 8 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Rightarrow\left[\left(3x\right)^2-2.3x.3+9\right]+\left(y^2-2.y.3+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\left(3x-3\right)^2\ge0\) với mọi x

\(\left(y-3\right)^2\ge0\) với mọi y

\(2\left(z+1\right)^2\ge0\) với mọi z

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\) với mọi x, y, z

\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-3=0\\y-3=0\\\left(z+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(x-1\right)=0\\y=3\\z+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y=3\\z=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

Vậy x = 1 ; y = 3 ; z = -1

25 tháng 3 2018

\(9x^2+y^2+2z^2-18x+4z-6z+20=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)