Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s: \(x\ge y\ge z\)
Vì x2 + y2 + z2 = 14 => \(x^2\le14\Rightarrow x\le\sqrt{14}< 4\) Vì x nguyên dương
=> x \(\in\){ 1; 2; 3}
+) Với x = 3 => \(\hept{\begin{cases}y+z=3\\y^2+z^2=5\end{cases}\Rightarrow\hept{\begin{cases}y+z=3\\y^2\le5\end{cases}}\Rightarrow\hept{\begin{cases}y+z=3\\y\in\left\{1;2\right\}\end{cases}}}\)
Khi y = 2 => z = 1 ( thỏa mãn)
Khi y = 1 => z = 2 ( loại)
+) Với x = 2 => \(\hept{\begin{cases}y+z=4\\y^2+z^2=10\end{cases}}\)=> Tồn tại 1 trong 2 số y; z lớn hơn 2 => lớn hơn x => loại
+) Với x = 1 => Loại
Vậy nghiệm : ( 3; 2; 1) và các hoán vị của nó: ( 3; 1; 2) ; ( 2; 3; 1) ; ( 2; 1; 3 ) ; ( 1; 2; 3) ; ( 1; 3; 2)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{90}{9}=10\)
=> x-1 = 10.2 = 20 => x= 21
y-2 = 10.3 = 30 => y = 32
z-3 = 10.4 =40 => z = 43
ta có \(\left(y+1\right)^2\)=\(\frac{32y}{x}\)=> x = \(\frac{32y}{\left(y+1\right)^2}\)=> x =\(\frac{16y^2+32y+16-16y^2-16}{\left(y+1\right)^2}\)=> x =\(\frac{16\left(y+1\right)^2-16\left(y^2-1\right)}{\left(y+1\right)^2}\)=> x = \(\frac{16\left(y+1\right)^2}{\left(y+1\right)^2}\)-\(\frac{16\left(y-1\right)\left(y+1\right)}{\left(y+1\right)^2}\)
=> x = 16 -\(\frac{16\left(y-1\right)}{y+1}\)=> x = 16 - \(\frac{16y+16-32}{y+1}\)=> x= 16-16 +\(\frac{32}{y+1}\)=> x= \(\frac{32}{y+1}\)
Vì x\(\in\)Z => \(\frac{32}{y+1}\)l \(\in\) Z => 32 \(⋮\)y+1 => y+1 \(\in\)Ư (32) = ( 1 ; 2;4;8;16;32;-1;-2;-4;-8;-16;-32)
đến đây dễ rồi tự làm
de bai sai nha bn
thiếu z a ơi