K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

x2-2x+y2+4y+4z2+6=0

=>(x-1)2        +(y+2)2+     4z2+1=0=>4z2+1=0=>z=+-1/2

  >hoặc=o    >hoặc=0     >hoặc=o

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

28 tháng 9 2021

\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)

\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)

7 tháng 8 2017

\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)

Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)

Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)

6 tháng 6 2016

\(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)

             \(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)

              \(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)

11 tháng 11 2019

ai đúng mình tk cho

mình cần chiều nay rồi