Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y+t=11 và y+z=9 ⇒ (y+t)-(y+z)=11-9=2
=>t-z=2 . mà z+t=12 => t-z+z+t=14=>2t=14=>t=7=>z=12-7=5
=>y=11-t=11-7=4 =>x=6-y=6-4=2
\(1.\)
Ta có :
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
\(\Rightarrow M=\left(-z\right)\left(-x\right)\left(-y\right)=-xyz\)
Mà \(xyz=2\)
\(\Rightarrow M=-2\)
Vậy : \(M=-2\)
\(2.\)
\(a.\)
Ta có :
\(yt.yz=48.24\)
\(\Rightarrow y^2.zt=48.24\)
Mà \(yt=32\Rightarrow y^2.32=48.24\)
\(\Rightarrow y^2=\frac{48.24}{32}\)
\(\Rightarrow y^2=36\)
\(\Rightarrow y=\pm6\)
+ Nếu \(x=6\)
Ta có : \(t=48:6=8\)
\(z=24:6=4\)
\(x=12:6=2\)
+ Nếu \(y=-6\)
Ta có : \(t=48:\left(-6\right)=-8\)
\(z=24:\left(-6\right)=-4\)
\(x=12:\left(-6\right)=-2\)
Vậy \(x=-2;y=-6;z=-4;t=-8\) hoặc \(x=2;y=6;z=4;t=8\)
\(b.\)
Ta có :
\(y+t=11\) \(\left(1\right)\)
\(y+z=9\) \(\left(2\right)\)
\(x+y=6\) \(\left(3\right)\)
\(z+t=12\) \(\left(4\right)\)
Lấy \(\left(1\right)+\left(2\right)\), ta được :
\(2y+t+z=20\)
Mà \(t+z=12\)
\(\Rightarrow2y+12=20\)
\(\Rightarrow2y=8\)
\(\Rightarrow y=4\)
Từ \(\left(2\right)\) \(\Rightarrow z=9-y=9-4=5\)
Từ \(\left(3\right)\) \(\Rightarrow x=6-y=6-4=2\)
Từ \(\left(4\right)\) \(\Rightarrow t=12-z=12-5=7\)
Vậy : \(x=2;y=4;z=5;t=7\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
giúp mik vs đang cần gấp
Ta có: y+t=11 và z+t=12 => y+t+z+t
= 2t+y+z = 2t+9 =11+12=23
=> 2t =23-9=14 => t=7
y+t=y+7=11 => y=11-7=4
Tương tự với x và z