Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: với x,y,z thuộc N; x<y<z ta có: 2^x + 2^y + 2^z = 2336
=> 2^z <2336
=> z nhỏ hơn hoăc 11 (1)
ta có: 2^z + 2^z + 2^z > 2^x + 2^y + 2^z
=> 3.2^z > 2336
=> 2^z nhỏ hơn hoặc = 778
=> z nhỏ hơn hoặc = 10 (2)
từ (1) và (2) suy ra z = {10; 11}
TH1: z = 10
=> 2^x + 2^y = 1312
=> 2^y < 1312
=> y nhỏ hơn hoặc = 10 (3)
ta có 2.2^y > 2^x + 2^y
=> 2.2^y > 1312
=> 2^y > 656
=> y nhỏ hơn hoặc = 10 (4)
từ (3) và (4) => y = 10 mà z = 10 ( LOẠI)
TH2: z = 11
=> 2^x + 2^y = 288
=> 2^y < 288
=> y nhỏ hơn hoặc = 8 (5)
ta có 2.2^y > 2^x + 2^y
=>2.2^y > 288
=> 2^y > 144
=> y nhỏ hơn hoặc bằng 8 (6)
từ (5) và (6) => y = 8
nhỏ hơn hoặc= 2^x + 2^8 = 288
=> 2^x = 32
=> x= 5 (chọn)
KL: vậy x = 5; y = 8; z = 11.
vì ta cần tìm giá trị lớn nhất của biểu thức trên nên ta sẽ tìm giá trị lớn nhất của từng số hạng của biểu thức trên:
-/x-7/ chắc chắn là số âm hoặc 0 vì /x-7/ luôn thuộc N từ đó suy ra giá trị của /x-7/ càng nhỏ thì giá trị của -/x-7/ càng cao,mà giá trị nhỏ nhất của /x-7/=0 nên -/x-7/=0.
-/y+13/ giải thích tương tự như phần trên thì ta đc /y+13/=0 nên -/y+13/=0.(chú ý phần này cũng phải giải thích chứ đừng có lười mà ghi như tui)
từ đó suy ra giá trị lớn nhất của biểu thức là 0+0+1945=1945.vậy giá trị lớn nhât là 1945.
Học tốt!!!
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a) 5x - x = 64 \(\Rightarrow\) 4x = 64 \(\Rightarrow\) x = 16
b) \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
c) \(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
d) \(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}\)
\(=\frac{49}{99}\)