Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 2 chẵn 1 lẻ
TH1: Cả 3 số hạng đều lẻ
=> x-y lẻ => x và y khác tính chẵn lẻ
y-z lẻ =>y và z khác tính chẵn lẻ
x-z lẻ => x và z khác tính chẵn lẻ\(=>x,y,z\) khác tính chẵn lẻ với nhau
Trong khi đó chỉ có 2 loại là chẵn và lẻ, ko có loại thứ 3
Vậy TH1 loại
TH2: 2 chẵn 1 lẻ
Giả sử (x-y)3 chẵn, (y-z)2 chẵn, 2015./x-z/ lẻ
=>x-y chẵn => x,y cùng tính chẵn lẻ (1)
y-z chẵn => y,z cùng tính chẵn lẻ (2)
x-z lẻ => x,z khác tính chẵn lẻ (3)
Từ (1) và (2) =>x,z cùng tính chẵn lẻ, mâu thuẫn với (3)
Các trường hợp (x-y)3 lẻ và (y-z)2 lẻ chứng minh tương tự
Vậy ko có x,y,z nguyên dương thỏa mãn đề bài
Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có
\(a^3+b^2+2015|a+b|=2017\)
+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.
Ta có:
(x - y) + (y - z) + (z - x)
= x - y + y - z + z - x
= 0
Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)
Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn
Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài
Ủng hộ mk nha ^_-
x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :
<=> x - y + y - z -(z - x) =2015
<=> 2(x - z) =2015 (*)
x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.
Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.
Ta có :
\(\left(x-y\right)^3\) cùng tính chất chẵn lẻ với \(x-y\)
\(\left(y-z\right)^2\)cùng tính chất chẵn lẻ với \(y-z\)
\(2015\left|x-z\right|\) cùng tính chất chẵn lẻ với \(x-z\)
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^2+2015\left|x-z\right|\) cùng tính chất chẵn lẻ với \(x-y+y-z+z-x=0\)
là số chẵn
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^2+2015\left|x-z\right|\) chẵn . Mà \(2017\) lẻ
\(\Rightarrow\) không tồn tại số nguyên dương x;y;z nào thỏa mãn