K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OK
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 3 2020
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
NT
0
NT
0
NT
0
+) Nếu x2 = 1 => x = 1 hoặc x = - 1 và y2 + z2 = 13 Mà y2 + z2 \(\ge\) 2y2 => 2y2 \(\le\) 13 . Vì y nguyên => y2 = 0; 1 ; 4
=> z2 = 13; 12; 9
Chỉ có y2 = 4 và z2 = 9 thỏa mãn => y = 2 hoặc -2 và z = 3 hoặc -3
+) Nếu x2 = 4 => x = 2 hoặc x = - 2 và y2 + z2 = 9 Mà y2 + z2 \(\ge\) 2y2 => 2y2 \(\le\) 9 . Vì y nguyên => y2 = 0; 1 ; 4
=> z2 = 9; 8; 5
Chỉ có y2 = 0 và z2 = 9 thỏa mãn . tuy nhiên do x2 < y2 nên trường hợp này loại
Vây (x;y;z) thỏa mãn là (1;2;3); (1; 2;-3); (1;-2;3);(1;-2;-3) ; (-1;2;3); (-1; 2;-3); (-1;-2;3);(-1;-2;-3)