Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vào đây nè
https://diendantoanhoc.net/topic/145759-ph%C3%A2n-t%C3%ADch-8xyz3-xy3-yz3-zx3/
\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)
\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy x = -1, y =0
x(x² + x + 1) = 4y(y + 1)
<=> (x + 1)(x² + 1) = (2y + 1)²
Dễ dàng thấy là: x + 1 và x² + 1 nguyên tố cùng nhau nên x + 1 và x² + 1 là 2 số chính phương.
=> x²; x² + 1 là 2 số chính phương liên tiếp
=> x = 0; y = 0 hoặc y = - 1
Ta có: \(A=\left(x+y+z\right)^3+\left(x-y-z\right)^3\)
\(=\left[\left(x+y\right)+z\right]^3+\left[\left(x-y\right)^3-z\right]^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3+\left(x-y\right)^3-3\left(x-y\right)^2z+3\left(x-y\right)z^2-z^3\)
\(=x^3+3x^2y+3xy^2+3\left(x^2+2xy+y^2\right)z+3z^2x+3z^2y+z^3+x^3-3x^2y+3xy^2-y^3\)\(-3\left(x^2-2xy+y^2\right)z+3z^2x-3z^2y-z^3\)
\(=x^3+3x^2y+3xy^2+3zx^2+6xyz+3zy^2+3z^2x+3z^2y+z^3+x^3-3x^2y+3xy^2-y^3\)
\(-3zx^2+6xyz-3zy^2+3z^2x-3z^2y-z^3\)
\(=2x^3+6xy^2+12xyz+6z^2x\left(1\right)\)
Ta có: \(B=6xy\left(y+z\right)^2+2x^3\)
\(=6xy\left(y^2+2yz+z^2\right)+2x^3\)
\(=6xy^3+12xy^2z+6xyz^2+2x^3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A\ne B\)
Haizz không bít có làm sai không mà nhìn rối lắm không muốn check lại ai làm thì so giùm đáp án
z đâu bạn?