Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có : x−12=y+34=z−56x−12=y+34=z−56 và 5z−3x−4y=505z−3x−4y=50
\Leftrightarrow 3(x−1)6=4(y+3)16=5(z−5)303(x−1)6=4(y+3)16=5(z−5)30 và 5z−3x−4y=505z−3x−4y=50
\Leftrightarrow 3x−36=4y+1216=5z−25303x−36=4y+1216=5z−2530 và 5z−3x−4y=505z−3x−4y=50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
3x−36=4y+1216=5z−2530=(5z−25)−(3x−3)−(4y+12)30−6−16=5z−3x−4y−25+3−128=168=23x−36=4y+1216=5z−2530=(5z−25)−(3x−3)−(4y+12)30−6−16=5z−3x−4y−25+3−128=168=2
\Rightarrow x−12=2x−12=2 \Rightarrow x−1=4x−1=4 \Leftrightarrow x=5x=5
\Rightarrow y+34=2y+34=2 \Rightarrow y+3=8y+3=8 \Leftrightarrow y=5y=5
\Rightarrow z−56=2z−56=2 \Rightarrow z−5=12z−5=12 \Leftrightarrow z=17z=17
tk nha bạn
\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{12}=\frac{y}{9}\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{9}=\frac{z}{20}=\frac{2x-3y+z}{2\cdot12-3\cdot9+20}=\frac{6}{17}\)
\(\Rightarrow x=\frac{72}{17};y=\frac{54}{17};z=\frac{120}{17}\)
|x+3/7|+|y-4/9|+|z+5/11|=0
<=>|x+3/7|=|y-4/9|=|z+5/11|=0
+)x+3/7=0=>x=-3/7
+)y-4/9=0=>y=4/9
+)z+5/11=0=>z=-5/11
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
Ta có: \(\left(x-\frac{1}{5}\right)^{2020}\ge0\forall x\)
\(\left(y+0.4\right)^{2000}\ge0\forall y\)
\(\left(z-3\right)^6\ge0\forall z\)
=> \(\left(x-\frac{1}{5}\right)^{2020}+\left(y+0.4\right)^{2000}+\left(z-3\right)^6\ge0\forall x,y,z\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-\frac{1}{5}=0\\y+0.4=0\\z-3=0\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{5}\\y=0\\z=3\end{cases}}\)
vậy ...