Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ nhưng bạn phải chứng minh bđt này đã:
\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
với a;b;c;d là các số dương
bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)
Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé
ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)
\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)
Tương tự ta cm được
\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)
dấu "=" khi x=y=z
ĐKXĐ: ...
Lấy pt cuối trừ 3 lần pt đầu ta được:
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)
Pt (2) tương đương:
\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)
Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)
Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)
\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)
\(\Rightarrow abc=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị
Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị
Áp dụng BĐT Cauchy - Schwarz ta có :
\(\frac{1}{\sqrt{x}+2\sqrt{y}}\le\frac{1}{9}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)
Tương tự cho 2 BĐT trên ta có :
\(\frac{1}{3}VP\le\frac{1}{9}.3\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)
\(=\frac{1}{3}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)=\frac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
Chúc bạn học tốt !!!
ta có bdt (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))(a+b+c)\(\ge\)9 (dễ dàng chứng minh) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Áp dụng bdt trên ta được
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}\ge\frac{9}{2\sqrt{y}+\sqrt{x}}\)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{y}+2\sqrt{z}}\)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\ge\frac{9}{\sqrt{z}+2\sqrt{x}}\)
Cộng vế theo vế ta đươc đt cần chứng minh
Dấu bằng khi x=y=z
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
\(ĐK:x\ge1,y\ge2,z\ge3\)
\(PT\Leftrightarrow\sqrt{x-1}+\frac{1}{\sqrt{x-1}}+\sqrt{y-2}+\frac{1}{\sqrt{y-2}}+\sqrt{z-3}+\frac{1}{\sqrt{z-3}}=6\)
Theo bđt AM-GM thì \(VT\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-1}=\frac{1}{\sqrt{x-1}}=1\\\sqrt{y-2}=\frac{1}{\sqrt{y-2}}=1\\\sqrt{z-3}=\frac{1}{\sqrt{z-3}}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=4\end{cases}}\)