Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1979}\right|+\left|z-2007\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1979}\right|=0\\\left|z-2007\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1979}=0\\z-2007=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-1890}{1979}\\z=2007\end{cases}}\)
Vì \(\left|x+\frac{19}{5}\right|\ge0\) với \(\forall x\)
\(\left|y+\frac{1890}{1975}\right|\ge0\) với \(\forall y\)
\(\left|z-2004\right|\ge0\)với \(\forall z\)
\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vì mỗi số hạng trên là giá trị tuyệt đối nên \(\ge\) 0 \(\Rightarrow\) Không thể có trường hợp có 2 số đối nhau, số còn lại bằng 0
\(\Rightarrow\left|x-\frac{15}{8}\right|=0\) và \(\left|\frac{2015}{2016}-y\right|=0\) và \(\left|2007+z\right|=0\)
\(\Rightarrow x-\frac{15}{8}=0\) và \(\frac{2015}{2016}-y=0\) và \(2007+z=0\)
\(\Rightarrow x=\frac{15}{8}\) và \(y=\frac{2015}{2016}\) và \(z=\left(-2007\right)\)
\(\left|x-\frac{15}{8}\right|\ge0;\left|\frac{2015}{2016}-y\right|\ge0;\left|2007+z\right|\ge0\)
Vậy \(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|\ge0\)
\(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|=0\)
\(\Leftrightarrow\)\(\left|x-\frac{15}{8}\right|=0;\left|\frac{2015}{2016}-y\right|=0;\left|2007+z\right|=0\)
Vậy \(x=\frac{15}{8};y=\frac{2015}{2016};z=-2007\)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Vì giá trị tuyệt đối của từng cái đó luôn lớn hơn hoặc bằng không nên biểu thức đó bằng không khi:
\(\left|x+\frac{13}{7}\right|=0\Rightarrow x+\frac{13}{7}=0\Rightarrow x=\frac{-13}{7}\)
\(\left|y+\frac{2009}{2008}\right|=0\Rightarrow y+\frac{2009}{2008}=0\Rightarrow y=\frac{-2009}{2008}\)
\(\left|z+2007\right|=0\Rightarrow z+2007=0\Rightarrow z=-2007\)
Vậy ....
Vì: \(Ix+\frac{1}{2}I\ge0\)
\(Iy-\frac{3}{4}I\ge0\)
\(Iz-1I\ge0\)
Mà \(Ix+\frac{1}{2}I+Iy-\frac{3}{4}I+Iz-1I=0\)
=> \(x+\frac{1}{2}=0\) và \(y-\frac{3}{4}=0\) và \(z-1=0\)
<=> \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
phần B lm tương tự nha
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
\(\Rightarrow x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
\(y-\frac{1}{5}=0\Rightarrow y=\frac{1}{5}\)
\(x+y+z=0\Leftrightarrow-\frac{3}{4}+\frac{1}{5}+z=0\Rightarrow-\frac{11}{20}+z=0\Rightarrow z=\frac{11}{20}\)
Vậy x = \(-\frac{3}{4}\) ; y = \(\frac{1}{5}\) ; z = \(\frac{11}{20}\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1979}=0\\z-2007=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1979}\\z=2007\end{cases}}}\)