Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !
Đặt :
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=k\)
\(\hept{\begin{cases}x-4=2k\\y-6=3k\\z-8=4k\end{cases}\Leftrightarrow\hept{\begin{cases}x=2k+4\\y=3k+6\\z=4k+8\end{cases}}}\)
\(\Rightarrow3x+2y-3z=36\Leftrightarrow3\left(2k+4\right)+2\left(3k+6\right)-3\left(4k+8\right)=36\)
\(\Leftrightarrow6k+4+6k+6-12k+8=36\)
\(\Leftrightarrow6k+4+6k+6-6k.2+8=36\)
\(\Leftrightarrow6\left[k\left(4+6-8\right)\right].2=36\)
\(\Leftrightarrow6k.2.2=36\Leftrightarrow6k.2^2=36\)
\(\Leftrightarrow6k=9\)
\(\Rightarrow k=\frac{3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.2+4\\y=\frac{3}{2}.3+6\\z=\frac{3}{2}.4+8\end{cases}\Leftrightarrow\hept{\begin{cases}x=3+4\\y=\frac{9}{2}+6\\z=6+8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}\)
Nhớ k nha ,dù mk trả lời hơi muộn
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Đặt : \(\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}=k\)
=> \(\hept{\begin{cases}\frac{x-1}{4}=k\\\frac{y-3}{5}=k\\\frac{z-4}{6}=k\end{cases}}\Rightarrow\hept{\begin{cases}x=4k+1\\y=5k+3\\z=6k+4\end{cases}}\)
=> 5x = 5(4k + 1) = 20k + 5
2y = 2(5k + 3) = 10k + 6
3z = 3(6k + 4) = 18k + 12
=> 5x + 2y + 3z = 20k + 5 + 10k + 6 + 18k + 12
=> 48k + 23 = 40
=> 48k = 40 - 23 = 17
=> k = \(\frac{17}{48}\)
Với k = \(\frac{17}{48}\)ta có : \(\hept{\begin{cases}x=4k+1=4\cdot\frac{17}{48}+1=\frac{29}{12}\\y=5k+3=5\cdot\frac{17}{48}+3=\frac{229}{48}\\z=6k+4=6\cdot\frac{17}{48}+4=\frac{49}{8}\end{cases}}\)
Vậy \(x=\frac{29}{12},y=\frac{229}{48},z=\frac{49}{8}\)
\(\hept{\begin{cases}\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}\\5x+2y+3z=40\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{5\left(x-1\right)}{20}=\frac{2\left(y-3\right)}{10}=\frac{3\left(z-4\right)}{18}\\5x+2y+3z=40\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{5x-5}{20}=\frac{2y-6}{10}=\frac{3z-12}{18}\\5x+2y+3z=40\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{5x-5}{20}=\frac{2y-6}{10}=\frac{3z-12}{18}=\frac{5x-5+2y-6+3z-12}{20+10+18}=\frac{17}{48}\)
=> \(\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}=\frac{17}{48}\)
\(\frac{x-1}{4}=\frac{17}{48}\Rightarrow x-1=\frac{17}{12}\Rightarrow x=\frac{29}{12}\)
\(\frac{y-3}{5}=\frac{17}{48}\Rightarrow y-3=\frac{85}{48}\Rightarrow y=\frac{229}{48}\)
\(\frac{z-4}{6}=\frac{17}{48}\Rightarrow z-4=\frac{17}{8}\Rightarrow z=\frac{49}{8}\)