K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Đặt  : \(\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}=k\)

=> \(\hept{\begin{cases}\frac{x-1}{4}=k\\\frac{y-3}{5}=k\\\frac{z-4}{6}=k\end{cases}}\Rightarrow\hept{\begin{cases}x=4k+1\\y=5k+3\\z=6k+4\end{cases}}\)

=> 5x = 5(4k + 1) = 20k + 5

     2y = 2(5k + 3) = 10k + 6

     3z = 3(6k + 4) = 18k + 12

=> 5x + 2y + 3z = 20k + 5 + 10k + 6 + 18k + 12

=> 48k + 23 = 40

=> 48k = 40 - 23 = 17

=> k = \(\frac{17}{48}\)

Với k = \(\frac{17}{48}\)ta có : \(\hept{\begin{cases}x=4k+1=4\cdot\frac{17}{48}+1=\frac{29}{12}\\y=5k+3=5\cdot\frac{17}{48}+3=\frac{229}{48}\\z=6k+4=6\cdot\frac{17}{48}+4=\frac{49}{8}\end{cases}}\)

Vậy \(x=\frac{29}{12},y=\frac{229}{48},z=\frac{49}{8}\)

23 tháng 12 2020

\(\hept{\begin{cases}\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}\\5x+2y+3z=40\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{5\left(x-1\right)}{20}=\frac{2\left(y-3\right)}{10}=\frac{3\left(z-4\right)}{18}\\5x+2y+3z=40\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{5x-5}{20}=\frac{2y-6}{10}=\frac{3z-12}{18}\\5x+2y+3z=40\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{5x-5}{20}=\frac{2y-6}{10}=\frac{3z-12}{18}=\frac{5x-5+2y-6+3z-12}{20+10+18}=\frac{17}{48}\)

=> \(\frac{x-1}{4}=\frac{y-3}{5}=\frac{z-4}{6}=\frac{17}{48}\)

\(\frac{x-1}{4}=\frac{17}{48}\Rightarrow x-1=\frac{17}{12}\Rightarrow x=\frac{29}{12}\)

\(\frac{y-3}{5}=\frac{17}{48}\Rightarrow y-3=\frac{85}{48}\Rightarrow y=\frac{229}{48}\)

\(\frac{z-4}{6}=\frac{17}{48}\Rightarrow z-4=\frac{17}{8}\Rightarrow z=\frac{49}{8}\)

18 tháng 10 2020

a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)

=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)

=> x = 18 ; y = 16 ; z = 15

b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)

Khi đó 5x + y - 2z = 28

<=> 5.5k + 3k - 2.2k = 28

=> 25k + 3k - 4k = 28

=> 24k = 28

=> k = 7/6

=> x = 35/6 ; y = 7/2 ; z = 7/3

c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)

=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)

=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)

=> x = 60 ; y = 45 ; z = 40

18 tháng 10 2020

A. Theo đề ta có: 

  -  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

  -    \(x+y+z=49\)

=> \(12x+12y+12=49\cdot12=588\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)

Còn lại bạn tự làm.

B. Theo đề ta có:

  - \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)

=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)

     Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)

     Còn lại bạn tự làm.

C. Theo đề ta có:

     \(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)

     \(x-y=15\)=> \(2x-2y=30\)

     Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)

     Ta suy ra:

    \(\frac{2y}{3}=20\)  => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)

 => \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)

      Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !

9 tháng 11 2016

Đặt :

 \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=k\)

\(\hept{\begin{cases}x-4=2k\\y-6=3k\\z-8=4k\end{cases}\Leftrightarrow\hept{\begin{cases}x=2k+4\\y=3k+6\\z=4k+8\end{cases}}}\)

\(\Rightarrow3x+2y-3z=36\Leftrightarrow3\left(2k+4\right)+2\left(3k+6\right)-3\left(4k+8\right)=36\)

\(\Leftrightarrow6k+4+6k+6-12k+8=36\)

\(\Leftrightarrow6k+4+6k+6-6k.2+8=36\)

\(\Leftrightarrow6\left[k\left(4+6-8\right)\right].2=36\)

\(\Leftrightarrow6k.2.2=36\Leftrightarrow6k.2^2=36\)

\(\Leftrightarrow6k=9\)

\(\Rightarrow k=\frac{3}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.2+4\\y=\frac{3}{2}.3+6\\z=\frac{3}{2}.4+8\end{cases}\Leftrightarrow\hept{\begin{cases}x=3+4\\y=\frac{9}{2}+6\\z=6+8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}\)

Nhớ k nha ,dù mk trả lời hơi muộn 

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin
13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.