K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}\)

\(=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)

\(=\frac{x+y+z}{2x+2y+2z}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}\)

\(=\frac{1}{2}\)

undefined

DD
12 tháng 2 2022

TH1: \(x+y+z=0\)

Bài toán trở thành: 

\(\frac{x}{-x-2}=\frac{y}{-y-3}=\frac{z}{-z+5}=0\)

\(\Leftrightarrow x=y=z=0\).

TH2: \(x+y+z\ne0\):

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}=x+y+z\).

Ta có hệ: 

\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z-2\\2y=x+z-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

x/y=3/4

=>x/3=y/4

=>x/15=y/20

y/z=5/7

=>y/5=z/7

=>y/20=z/28

=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3

=>x=45; y=60; z=84

13 tháng 3 2023

cảm ơn bạn nhiều

 

NM
14 tháng 8 2021

ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)

vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)