Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ \(\left|x\right|\ge0;\left|y\right|\ge0;\left|z\right|\ge0\)NÊN ĐỂ\(\left|x\right|+\left|y\right|+\left|z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}}\)
Vì \(\left|x\right|\ge0,\left|y\right|\ge0,\left|z\right|\ge0\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|=0\Leftrightarrow x=y=z=0\)
Có 2 Th | x-2| , (x-y+1)^2 =0
| x-2| , (x-y+1)^2 là hai số đối ; lx-2/ nguyên dương => ( x - y + 1 )^2 là số nguyên âm
TH1 | x-2| , (x-y+1)^2 =0
=> x = 2 để /x-2/ = 0
thay vào bên kia ta có : ( 2 - y + 1 ) ^2 = 0 => 2 - y + 1 = 0 => 3 - y = 0 => y = 3
TH2 : Tự xét nha bn
Ta có: (x-2)(y+12)<0
nên x-2;y+12 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x-2>0\\y+12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\y< -12\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\y+12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\y>-12\end{matrix}\right.\)
=> x=1/3 hoặc y=1/5 hoặc z=-1/4 (một trong 3 tích này bằng 0)
x+y=y-1 nên x=y-1-y = -1
Lại có: y-1 = z+1 nên y>x
+ Nếu y = 1/5 thì 1/5-1 = z+1 => -4/5 = z+1 => z = -4/5-1 = -9/5
Thử lại: -1+1/5 = -4/5 = -9/5 + 1
Vậy ta có cặp x,y,z lần lượt là -1;1/5;-9/5
+ Nếu z = -1/4 thì y-1 = -1/4+1 => y-1 = 3/4 => y = 3/4+1 = 7/4
Vậy ta có cặp x,y,z tiếp theo là x=-1 ; y=7/4 ; z=-1/4
/x/+/y/+/z/=0 khi và chỉ khi x=0, y=0,z=0
ijikujbki