K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

Từ trên => \(x^2=x\)\(y^2=y\)\(z^2=z\)

=> phân tích ra thì ta có 2 kết quả

x=y=z=0 và x=y=z=1

17 tháng 3 2023

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

17 tháng 3 2023

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2 (1)

��=��=�� Áp dụng tính chất dãy tỉ số bằng nhau ta có:

��=��=��=�+�+��+�+� = �+�+�1 = �+�+�

�� = �+�+� ⇒ �2�2 = (�+�+�) (2) 

Từ (1) và (2) ta có :

�2�2 = �2 + y2 + z2 = ( �+�+�)2 (đpCm)

Ta has: x2+y2≥2xyx ^ 2 + y ^ 2 \ ge2xyx2+y2≥2 x y

⇔2(x2+y2)≥(x+y)2\ Leftrightarrow2 \ left (x ^ 2 + y ^ 2 \ right) \ ge \ left (x + y \ right) ^ 2⇔2( x2+y2)≥( x+y )2

⇔x2+y2≥(x+y)22\ Leftrightarrow x ^ 2 + y ^ 2 \ ge \ frac {\ left (x + y \ right) ^ 2} {2}⇔x2+y2≥2( x + y )2Các bác sĩ cho biết thêm:

Áp dụng vào bài toán có:

P≤x+y(x+y)22+y+z(y+z)22+z+x(z+x)22P \ le \ frac {x + y} {\ frac {\ left (x + y \ right) ^ 2} {2}} + \ frac {y + z} {\ frac {\ left (y + z \ right ) ^ 2} {2}} + \ frac {z + x} {\ frac {\ left (z + x \ right) ^ 2} {2}}P≤2( x + y )2Các bác sĩ cho biết thêm:x + yCác bác sĩ cho biết thêm:+2( y + z )2Các bác sĩ cho biết thêm:y + zCác bác sĩ cho biết thêm:+2( z + x )2Các bác sĩ cho biết thêm:z + xCác bác sĩ cho biết thêm: =2x+y+2y+z+2z+x=12(4x+y+4y+z+4z+x)= \ frac {2} {x + y} + \ frac {2} {y + z} + \ frac {2} {z + x} = \ frac {1} {2} \ left (\ frac {4} {x + y} + \ frac {4} {y + z} + \ frac {4} {z + x} \ right)=x + y2Các bác sĩ cho biết thêm:+y + z2Các bác sĩ cho biết thêm:+z + x2Các bác sĩ cho biết thêm:=21Các bác sĩ cho biết thêm:(x + y4Các bác sĩ cho biết thêm:+y + z4Các bác sĩ cho biết thêm:+z + x4Các bác sĩ cho biết thêm:)

Áp dụng BĐT Svacxo ta có:

4x+y≤1x+1y\ frac {4} {x + y} \ le \ frac {1} {x} + \ frac {1} {y}x + y4Các bác sĩ cho biết thêm:≤x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:4y+z≤1y+1z\ frac {4} {y + z} \ le \ frac {1} {y} + \ frac {1} {z}y + z4Các bác sĩ cho biết thêm:≤y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:4z+x≤1z+1x\ frac {4} {z + x} \ le \ frac {1} {z} + \ frac {1} {x}z + x4Các bác sĩ cho biết thêm:≤z1Các bác sĩ cho biết thêm:+x1Các bác sĩ cho biết thêm:

Do đó: P≤12[2.(1x+1y+1z)]=2016P \ le \ frac {1} {2} \ left [2. \ left (\ frac {1} {x} + \ frac {1} {y} + \ frac {1} {z} \ right) \ right ] = 2016P≤21Các bác sĩ cho biết thêm:[ 2 .(x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:) ]=2 0 1 6

Dấu "=" ⇔x=y=z=1672\ Leftrightarrow x = y = z = \ frac {1} {672}⇔x=y=z=6 7 21Các bác sĩ cho biết thêm:

P / s: Dấu "=" không chắc lắm :))

Học tốt đêý nhá

10 tháng 11 2020

ta có 5x=7y=3z= \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

ADTC dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra: 

\(\frac{x^2}{25}=9\Rightarrow x^2=25.9\Rightarrow x^2=225\Rightarrow x^2=15^2\Rightarrow x=15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49\Rightarrow y^2=441\Rightarrow y^2=21^2\Rightarrow y=21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9\Rightarrow z^2=81\Rightarrow z^2=9^2\Rightarrow z=9\)

Vậy x = 15;y=21;z=9

3 tháng 9 2021

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

22 tháng 12 2022

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt 

 

1 tháng 12 2021

fnf tha