Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Theo tính chất của dãy tỉ số bằng nhau, ta có :}\)
\(\frac{x}{15}=\frac{y}{15}=\frac{z}{7}=\frac{x-y+z}{15-15+7}=\frac{30}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{15}=\frac{30}{7}\Leftrightarrow x=y=\frac{450}{7}\)
\(\Rightarrow\frac{z}{7}=\frac{30}{7}\Leftrightarrow z=30\)
Vậy : \(x=y=\frac{450}{7};z=30\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ :
x/15=y/15=z/7 = x/15=z/7+y/15=x+z-y/15+7-15=x-y+z/15-15+7=30/7 ( 1)
từ (1) ta suy ra : x/15=30/7 và y/15=30/7 và z/7=30/7
vậy x=450/7 , y=450/7 và z=30
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) nha bạn!
ko hỉu thì ib
\(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\ge9\) với x,y,z dương hay jj đó chứ? (cái này t k bt -.-) VD: x=2, y=-2,z=4
=> \(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)=\left(2-2+4\right).\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{4}\right)=1\)
-----------------------------------------------------------------------------------------
\(\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{x+y+z}{x+y+z}=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
vì x+y+z khác 0 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{xy+yz+xz}{xyz}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{\left(xy+yz+xz\right).\left(x+y+z\right)-xyz}{xzy.\left(x+y+z\right)}=0\)
\(\Leftrightarrow\frac{x^2y+xy^2+xyz+zyx+y^2z+yz^2+x^2z+xyz+xz^2-xzy}{xyz.\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\left(yz^2+xzy\right)+\left(x^2z+xz^2\right)=0\)
\(\Leftrightarrow xy.\left(x+z\right)+y^2.\left(x+z\right)+yz.\left(z+x\right)+xz.\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left[x.\left(y+z\right)+y.\left(y+z\right)\right]=0\)
\(\Leftrightarrow\left(x+y\right).\left(y+z\right).\left(x+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=-z\end{cases}\text{hoặc }x=-z}\)
\(\Rightarrow P=\left(\frac{1}{x}-\frac{1}{y}\right).\left(\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{z}+\frac{1}{x}\right)=0\)
ps: bài này t làm cách l8, ai có cách ez hơn giải vs ak :') morongtammat
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{y+z-2+x+z+1+x+y+1}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\cdot\frac{x}{y+z-2}=\frac{1}{2}\)
\(\Rightarrow2x=y+z-2\)
\(3x=x+y+z-2=\frac{1}{2}-2=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{1}{2}\)
\(\cdot\frac{y}{x+z+1}=\frac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1=\frac{1}{2}+1=\frac{3}{2}\)
\(\Rightarrow y=\frac{1}{2}\)
\(z=\left(x+y+z\right)-x-y=\frac{1}{2}-\left(-\frac{1}{2}\right)-\frac{1}{2}=\frac{1}{2}\)
Vậy ...
+, Nếu x+y+z=0 => B = x+y/y. y+z/z . z+x/x = (-z/y).(-x/z).(-y/x) = -xyz/xyz = -1
+, Nếu x+y+z khác o thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có : y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1
=> y+z-x=x ; z+X-y=y ; x+y-z=z
=> x=y=z
=> B = (1+1).(1+1).(1+!) = 8
Vậy .............
Tk mk nha
ADTCDTSBN
\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)=\(\frac{x+y-z}{z}\)=\(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)=1
\(\Rightarrow\)\(\hept{\begin{cases}y=-z\\z=-x\\x=-y\end{cases}}\)
Khi đó B=\(\left(1+\frac{-y}{y}\right)\)\(\left(1+\frac{-z}{z}\right)\)\(\left(1+\frac{-x}{x}\right)\)=0
Vậy B=0 ........... hjhjh