K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

ĐK:\(x\ge a;y\ge b;z\ge c\)

Cosi 2 số

\(\sqrt{x-a}\le\frac{x-a+1}{2}\)

\(\sqrt{y-b}\le\frac{y-b+1}{2}\)

\(\sqrt{z-c}\le\frac{z-c+1}{2}\)

\(\Rightarrow\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}\le\frac{\left[x+y+z-\left(a+b+c\right)+3\right]}{2}=\frac{x+y+z}{2}=\frac{1}{2}\left(x+y+z\right)\)

Dấu = khi \(\hept{\begin{cases}x-a=1\\y-b=1\\z-c=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=a+1\\y=b+1\\z=c+1\end{cases}}\)từ đó suy ra nghiệm của pt đã cho

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

2 tháng 3 2017

áp dụng BĐT C-S dạng engel : A >/ x+y+z

 áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx 

=>minA = 1

2 tháng 3 2017

co ai giup em voi

16 tháng 10 2016

Ta có \(2\sqrt{x}\le x+1\)

\(4\sqrt{y-1}\le4+y-1=y+3\)

\(6\sqrt{z-2}\le9+z-2=z+7\)

Cộng vế theo vế ta được

\(2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\le x+y+z+11\)

Dấu = xảy ra khi x = 1, y = 5, z = 11

9 tháng 8 2021

\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)

\(\Leftrightarrow2x\sqrt{1-y^2}+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)

\(\Leftrightarrow6-2x\sqrt{1-y^2}-2y\sqrt{2-z^2}-2z\sqrt{3-x^2}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{1-y^2}+\left(1-y^2\right)\right)+\left(y^2-2y\sqrt{2-z^2}+\left(2-z^2\right)\right)+\left(z^2-2z\sqrt{3-x^2}+\left(3-x^2\right)\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

\(\Leftrightarrow x=\sqrt{1-y^2};y=\sqrt{2-z^2};z=\sqrt{3-x^2}\)

\(\Leftrightarrow x=1,y=0,z=\sqrt{2}\)

26 tháng 7 2017

ĐK \(x;y;z>0\)

Đặt \(x\sqrt{yz}=\left(1\right);y\sqrt{xz}=\left(2\right);z\sqrt{xy}=\left(3\right)\)

Lấy \(\frac{\left(1\right)}{\left(2\right)}\)ta có \(\frac{x\sqrt{yz}}{y\sqrt{xz}}=\frac{x}{y}.\sqrt{\frac{y}{x}}=\frac{8}{2}=4\Rightarrow\frac{x^2}{y^2}.\frac{y}{x}=16\Rightarrow\frac{x}{y}=16\)\(\Rightarrow x=16y\)

Tương tự ta có \(\frac{y\sqrt{xz}}{z\sqrt{xy}}=2\Rightarrow\frac{y}{z}=4\Rightarrow z=\frac{y}{4}\)

Thay x;z vào (2) ta có \(y\sqrt{xz}=y\sqrt{16y.\frac{y}{4}}=2\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\left(l\right)\end{cases}\Rightarrow y=1}\)

\(\Rightarrow x=16;z=\frac{1}{4}\)

Vậy \(x=16;y=1;z=\frac{1}{4}\)