K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Ta có : x2 + y2 + 6y + 8 = 0

           x2 + ( y2 + 6y + 9 ) - 1 = 0

           x2 + (y + 3)2 = 1    (1)

Vì x2 >= 0 với mọi x;  (y + 3)>= 0 với mọi y nên từ (1) => x2 =< 1

Mà x2 >= 0; x2 thuộc N* ( vì x thuộc z)

=>  x2 = 0 hoặc x2 = 1.

+ với x2 = 0 <=> x = 0 và (y+ 3)2 = 1

                                      <=> y = -2 hoặc y = -4

+ với x2 = 1 <=> x = 1 hoặc x = -1 

Khi đó (y+3)2 = 0 <=> y + 3 =0 <=> y = -3

Vậy (x;y) thuộc (0;-2) , (0;-4) , (1;-3) , (-1;-3).

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

21 tháng 9 2021

xy là x.y hay là x và y vậy bn

21 tháng 9 2021

X và y là số nguyên phải ko

5 tháng 4 2016

Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)

<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0

<=> x=y=z

=> 3x^2014=3

=>x=y=z=1

=>P= 1^25+1^4+1^2015 = 3

15 tháng 1 2018

Dự đoán của chúa Pain  x=y=z=1/3

áp dụng bất đẳng thức cô si ta có:

\(2xy\le2\left(\frac{x+y}{2}\right)^2\)

\(yz\le\left(\frac{y+z}{2}\right)^2\)

\(xz\le\left(\frac{z+x}{2}\right)^2\)

 ( vì X=Y=Z dự đoán của chúa pain) suy ra x+y=2x..ta được :

\(P\le2\left(\frac{x+y}{2}\right)^2+\left(\frac{y+z}{2}\right)^2+\left(\frac{z+x}{2}\right)^2\Leftrightarrow2x^2+y^2+z^2\)

\(P\le2x^2+y^2+z^2\Leftrightarrow P\le\frac{1}{3}\Leftrightarrow P\le\frac{2}{9}+\frac{1}{9}+\frac{1}{9}\Leftrightarrow P\le\frac{4}{9}\)

Vậy Max của P là 4/9 dâu = xảy ra khi x=y=z=1/3 đúng như dự đoán của chúa pain . chúa pain vô cmm nó địch :))

15 tháng 1 2018

Cái chỗ \(P\le\frac{1}{3}\)

 là Mình viết nhầm nha 

16 tháng 7 2017

a)  \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\)   nên  \(\left(x-1\right)^2+4\ge4\)

Vậy GTNN của P là 4  khi  x = 1

b)   \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)

Vì   \(2.\left(x-1,5\right)^2\ge0\)   nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)

Vậy  GTNN của Q là -4,5  khi x = 1,5

c)  \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)

\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)

Vì  \(\left(x-0,5\right)^2\ge0\)  và   \(\left(y+3\right)^2\ge0\)  nên   \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)

Vậy   GTNN của M là 0,75  khi x = 0,5  và y = -3

16 tháng 7 2017

Ta có : P = x2 - 2x + 5 

= x2 - 2x + 1 + 4 

= (x - 1)2 + 4 

Mà : (x - 1)2 \(\ge0\forall x\)

Nên : (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là : 4 khi x = 1