Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2xy-6x+y=13
<=>2x(y-3)+(y-3)=10
<=>(y-3)(2x+1)=10
=>y-3 và 2x+1 thuộc Ư(10)
=>Ư(10)={-1;1;-2;2;-5;5;-10;10}
Vì 2x+1 luôn lẻ
=>2x+1={-1;1;-5;5}
Ta có bảng sau:
2x+1 | -1 | 1 | -5 | 5 |
y-3 | -10 | 10 | -2 | 2 |
x | -1 | 0 | -3 | 2 |
y | -7 | 13 | 1 | 5 |
NX | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;13); (2;5)
b) 2xy+2y-x=16
<=>x(2y-1)+(2y-1)=15
<=>(2y-1)(x+1)=15
=>2y-1 và x+1 thuộc Ư(15)
=>Ư(15)={-1;1;-3;3;-5;5;-15;15}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
2y-1 | -15 | 15 | -5 | 5 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 | -6 | 4 | -16 | 14 |
y | -7 | 8 | -2 | 3 | -1 | 2 | 0 | 1 |
NX | loại | tm | loại | tm | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;8); (2;3); (4;2); (14;1)
\(9xy-6x+3y=6\)
\(\Leftrightarrow3x.\left(3y-2\right)+3y=6\)
\(\Leftrightarrow3x.\left(3y-2\right)+3y-2=6-2\)
\(\Leftrightarrow3x.\left(3y-2\right)+\left(3y-2\right)=4\)
\(\Leftrightarrow\left(3y-2\right)+\left(3x+1\right)=6\)
Mà \(x,y\in Z\Rightarrow3y-2;3x+1\in Z\)
Lập bảng làm nốt
b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)mà\(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)
Vậy \(n\in\left\{-2;0;-4;2\right\}\)
Chúc bạn học tốt !
Ta thấy: 6x\(⋮\)3
9y\(⋮\)3
=> 6x-9y\(⋮\)3
Mặt khác 2014 không chia hết cho 3 => không tồn tai x,y thỏa mãn bài toán