Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
a)\(9y^3-y\)
\(=y\left(9y^2-1\right)\)
\(=y\left(3y-1\right)\left(3y+1\right)\)
\(9y^3-y=y\left(9y^2-1\right)=y\left(3y+1\right)\left(3y-1\right)\)
\(8y^3-2y\left(1-2y\right)^2=2y\left[\left(2y\right)^2-\left(1-2y\right)^2\right]=2y\left(4y-1\right)\)
\(2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\)
1) x2 + x - y2 + y = (x2 - y2) + (x + y) = (x - y)(x + y) + (x + y) = (x - y + 1)(x + y)
2) 4x2 - 9y2 + 4x - 6y = (4x2 - 9y2) + (4x - 6y) = (2x - 3y)(2x + 3y) + 2(2x - 3y) = (2x - 3y)(2x + 3y + 2)
3) x2 + x + y2 + y + 2xy = (x2 + 2xy + y2) + (x + y) = (x + y)2 + (x + y) = (x + y)(x + y + 1)
4) -x2 + 5x + 2xy - 5y - y2 = -(x2 - 2xy + y2) + (5x - 5y) = -(x - y)2 + 5(x - y) = (x - y)(y - x + 5)
5) x2 - y2 + 2x + 1 = (x2 + 2x + 1) - y2 = (x + 1)2 - y2 = (x + 1 + y)(x - y + 1)
6) x2 - 1 - y2 + 2y = x2 - (y2 - 2y + 1) = x2 - (y - 1)2 = (x - y + 1)(x + y - 1)
7) x2 + 2xz - y2 + 2uy + z2 - u2 =(x2 + 2xz + z2) - (y2 - 2uy + u2) = (x + z)2 - (y - u)2 = (x + z - y + u)(x + z + y - u)
8) x3 + 3x2y + x + 3xy2 + y + y3 = (x3 + 3x2y + 3xy2 + y3) + (x + y) = (x + y)3 + (x + y) = (x + y)(x2 + 2xy + y2 + 1)
9) x3 + y(1 - 3x2) + x(3y2 - 1) - y3 = x3 + y - 3x2y + 3xy2 - x - y3 = (x3 - 3x2y + 3xy2 - y3) - (x - y) = (x - y)3 - (x - y) = (x - y)(x2 - 2xy+y2-1)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~