Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x,y thuộc Z
a)(x+1)(y-2)=2=1.2=(-1).(-2)
Thay lần lượt có 4 cặp nhé
b)(3-x)(xy+y)=1=1.1=(-1).(-1)
*)3-x=1 và xy+y=1
=>x=2 và y(x+1)=1=1.1=>y= x=0(L vì x nhận 2 giá trị khác nhau)
*)3-x=-1 và xy+y=-1
<=>x=4 và y(x+1)=-1 giải ra thì TH này cũng bị loại
1a, xy+3x-7y-21=0
<=>x(y+3)-(7y+21)=0
<=>x(y+3)-7(y+3)=0
<=>(x-7)(y+3)=0
1b, xy+3x-2y=6
<=>(xy+3x)-2y-6=0
<=>x(y+3)-2(y+3)=0
<=>(x-2)(y+3)=0
x2 (x - y) = 5 (y - 1)
=> x2 (x - y) (y - 1) = 5
=> x2 .xy - x - y - y = 5
=> x2 (xy - x) - 2y = 5
=> x2 - x(y + 1) - 2y = 5
=> (x2 - x) (y + 1) - 2y = 5
=> x(x - 1)(y + 1) - 2y = 5
=> (x - 1) (y + 1) (x - 2y) = 5
=> \(\hept{\begin{cases}x-1=5\\y+1=5\\x-2y=5\end{cases}}\)
bó tay1!!!!!!!!!!!!5645775687697897894525256346436546457567567576876887956867876
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
xy=x+y
\(\Leftrightarrow xy-x-y+1=1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1=1.1=-1.-1\)
x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(2\) |
\(y-1\) | \(-1\) | \(1\) |
\(y\) | \(0\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)
b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(-3\) | \(1\) | \(3\) |
\(x\) | \(0\) | \(-2\) | \(2\) | \(4\) |
\(y-1\) | \(-3\) | \(-1\) | \(3\) | \(1\) |
\(y\) | \(-2\) | \(0\) | \(4\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\), \(\left(-2;0\right)\), \(\left(2;4\right)\), \(\left(4;2\right)\)
(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0
x+1 + x+3 +x+5 +....+x+99 =0
Có số số hạng x là : (99-1):2+1= 50 số
Ta có: 50x + ( 1+3+5+...+99) = 0
Đặt A= 1+3+5+...+99
Tổng A là: (99+1).50:2= 2500
=> 50x + 2500 = 0
50x = 0-2500
50x= -2500
x= -2500 :50
x= -50
Vậy...
a) xy - 3x =-19
x(y-3) = -19
=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}
=> y \(\in\){ 4; 22; -16; 2}
Sau bn lập bảng tìm x nha
b) 3x + 4y - xy = 16
3x + y(4-x) =16
12 - [ 3x+ y(4-x)] =12-16
12 - 3x - y(4-x)= -4
3(4-x)- y(4-x) = -4
(3-y) ( 4-x) =-4
Sau bn lập bảng tìm xy nha
Nguồn phần b là của bn Tài nha :>
Bài 1 :
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )
\(x+1+x+3+x+5+...+x+99=0\)
\(x+x+...+x+1+3+...+99=0\)
\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)
\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)
\(\left(x\times50\right)+\left(5000\div2\right)=0\)
\(\left(x\times50\right)+2500=0\)
\(x\times50=0-2500\)
\(x\times50=-2500\)
\(x=-2500\div50\)
\(x=-50\)
Bài 2 :
a ) \(xy-3x=-19\)
\(\Leftrightarrow\)\(x,y\inℤ\)và \(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)
Ta có bảng sau
x | - 19 | 19 | - 1 | 1 |
y - 3 | 1 | - 1 | 19 | - 19 |
y | 4 | 2 | 22 | - 16 |
Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)
b ) \(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)
\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)
\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)
\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\) và \(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=
Ta có bảng sau :
x + 4 | 1 | - 1 | 2 | - 2 | 4 | - 4 |
x | - 3 | - 5 | - 2 | - 6 | 0 | - 8 |
y - 3 | 4 | - 4 | 2 | - 2 | 1 | - 1 |
y | 7 | - 1 | 5 | 1 | 4 | 2 |
Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)
xy + x - y = 6
\(\Rightarrow x\left(y+1\right)-y-1=5\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
Ta có bảng sau:
Vậy...
=> x(y+1) - (y+1) = 5
=> (x-1)(y+1) = 5
sau tự giải nha bn , k mik nữa