K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

mình làm rồi nhờ câu trả lời là 21

5 tháng 11 2016

Ta có

\(xy-7y+5x=0\)

\(\Leftrightarrow y=\frac{5x}{7-x}=-5+\frac{35}{7-x}\ge3\)

\(\Leftrightarrow\frac{35}{7-x}\ge8\Leftrightarrow7-x\le4\)

Vậy ta sẽ tìm x sao cho 7 - x là ước của 35 và \(0< 7-x\le4\)

\(\Rightarrow7-x=1\)

\(\Rightarrow x=6\Rightarrow y=30\)

18 tháng 9 2018

c) \(^{x^2}\)+xy-x-2=0

18 tháng 9 2018

bn vào trang wed này mik chỉ cho, cứ nhắn tin cho mik đi rồi mik sẽ ns.

13 tháng 9 2018

Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)

\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)

\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

\(\Rightarrow x=y=z=0\Rightarrow dpcm\)

13 tháng 9 2018

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)

b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)

\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

a: A+B

=x^2y+xyz+7y^2-25xy-xyz+x^2y-7y^2+xy

=-24xy+2x^y

A-B=x^2y+xyz+7y^2-25xy+xzy-x^2y+7y^2-xy

=2xyz+14y^2-26xy

b: Bậc của A là 3

bậc của B là 3

c: Khi x=-3;y=-1/2;z=0 thì:

A=9*(-1/2)+0+7*(-1/2)^2-25*(-3)*(-1/2)

=-9/2+7/4-75/2

=-42+7/4=-161/4

B=(-3)*(-1)*(-1/2)*0+(-3)^2*(-1/2)-7*1/4+(-3)*(-1/2)

=-9/2-7/4+3/2

=-3-7/4=-19/4

NV
6 tháng 4 2019

\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)

Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)