K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

29 tháng 9 2015

x2-2xy+2y2+4y+4+(2z-3)2=0

(x2-2xy+y2)+(y2+4y+4)+(2z-3)2=0

(x-y)2+(y+2)2+(2z-3)2=0

=>x-y=y+2=2z-3=0

=>z=3/2

y=-2

x=-2

20 tháng 8 2020

Theo gt ta co \(\hept{\begin{cases}x^2+4=4y\left(1\right)\\y^2+4=4z\left(2\right)\\z^2+4=4x\left(3\right)\end{cases}}\)

Cong (1) ,(2) va (3) ta duoc

\(\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\\z-2=0\end{cases}\Leftrightarrow x=y=z=2}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

5 tháng 8 2015

 

x2+4y2-2x+4y+2=0

<=>x2-2x+1+4y2+4y+1=0

<=>(x-1)2+(2y+1)2=0

<=>x-1=0 và 2y+1=0

<=>x=1 và y=-1/2

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$