Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
PT <=> (3x - 1)(6x - 1)(4x - 1)(5x - 1) = 120
. <=> (18x² - 9x + 1)(20x² - 9x + 1) = 120
Đặt a = 19x² - 9x + 1 (Đk a > 0) ta có PT: (a - 1)(a + 1) = 120
<=> a² - 1 = 120
<=> a² = 121
<=> a = 11 (Vì a >0)
Với a = 11 ta có PT: 19x² - 9x - 10 = 0
<=> (10x + 19)(x - 1) = 0
<=> x = 1 (Vì x nguyên)
KL: x = 1
bạn làm sai rồi chỗ hàng 3 ta có: (a-x^2)(a+x^2) mới đúng chứ ko phải (a-1)(a+1)
PT <=> (3x - 1)(6x - 1)(4x - 1)(5x - 1) = 120
. <=> (18x² - 9x + 1)(20x² - 9x + 1) = 120
Đặt a = 19x² - 9x + 1 (Đk a > 0) ta có PT: (a - 1)(a + 1) = 120
<=> a² - 1 = 120
<=> a² = 121
<=> a = 11 (Vì a >0)
Với a = 11 ta có PT: 19x² - 9x - 10 = 0
<=> (10x + 19)(x - 1) = 0
<=> x = 1 (Vì x nguyên)
KL: x = 1
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
6.............................................................................7
1/ xy+14+2y+7x=-10
y(x+2)+7(x+2)=-10
(x+2)(y+7)=-10
suy ra x+2, y+7 thuộc ước -10
rồi vẽ bảng xét từng giá trị là đc, còn ấy câu kia thì phân tích thành nhân tử rồi lm như bình thường
1)12.(-76) + 36.(-8)
= 12. (-76) + 3 . 12 . (-8)
= 12.(-76) - 24 . 12
= 12.(-76 - 24)
= 12.(-100)
= -1200
2,a) Ta có : -13 = -1. 13 = (-13). 1 = 1 . (-13) = 13 . (-1)
Lập bảng :
3x - 1 | -1 | 1 | -13 | 13 |
y + 4 | 13 | -13 | 1 | -1 |
x | 0 | 2/3 | -4 | 14/3 |
y | 9 | -17 | -3 | -5 |
vì x,y thuộc Z nên
b) Tự làm
b, \((5x-1)(y+1)=4\)
\(\Rightarrow(5x-1)(y+1)\inƯ(4)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng :
5x - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
y + 1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | loại | 0 | loại | loại | 1 | loại |
y | -5 | 3 | -3 | 1 | -2 | 0 |
Vậy :
Bài 1 : a) 3x2 +21x=0
3x(x+7)=0
=> x=0 hoặc x+7=0 =>x=0 hoặc x= -7
b)5x-6x2=0
x(5-6x)=0
=> x=0 hoặc 5-6x=0 => x=0 hoặc x=\(\frac{5}{6}\)
\(3x^2+21x=0\)
\(\Rightarrow3x\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}\)
\(5x-6x^2=0\)
\(\Rightarrow x\left(5-6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5-6x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{6}\end{cases}}}\)
\(\left(2x+3\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=5\end{cases}}}\)