Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XONG RỒI ĐẤY BẠN
a) \(x^2-2x+2xy=3+4y\)
\(x^2-2x+2xy-4y=3\)
\(x\left(x-2\right)+2y\left(x-2\right)=3\)
\(\left(x-2\right)\left(x+2y\right)=3\)
\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x+2y\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(3\) | \(1\) | \(5\) | \(-1\) |
\(y\) | \(0\) | \(-2\) | \(-2\) | \(0\) |
Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)
b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
Ta có: \(\left|2x-3y\right|\ge0\)
\(\left|5y-7z\right|\ge0\)
\(\left|x^2-y^2-2z^2-45\right|\ge0\)
\(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)
Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)
\(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)
\(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))
\(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)
Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)