Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)
\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\)
Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)
Dấu"=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)
Vậy x = 6 và y = -8
Bạn vui lòng viết đề đầy đủ, và gõ bằng công thức toán để được hỗ trợ tốt hơn.
Ta có:
\(5x+14y-2xy=35\)
\(\Leftrightarrow\left(5x-35\right)+\left(14y-2xy\right)=0\)
\(\Leftrightarrow\left(7-x\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=2,5\end{cases}}\)
Thế x = 7 vào cái còn lại ta được
\(7^2-4y^2=24\)
\(\Leftrightarrow y^2=\frac{25}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=-\frac{5}{2}\end{cases}}\)
Thế y = 2,5 vào cái còn lại ta được
\(x^2-4.2,5^2=24\)
\(\Leftrightarrow x^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(2xy-6=4x-y\Leftrightarrow2xy-4x+y-2=4\)
\(\Leftrightarrow2x\left(y-2\right)+\left(y-2\right)=4\Leftrightarrow\left(y-2\right)\left(2x+1\right)=4\)(1)
Có \(x,y\inℤ\Rightarrow\hept{\begin{cases}2x+1\inℤ\\y-2\inℤ\end{cases}}\)
Từ (1) => 2x + 1 thuộc Ư(4) ; y - 2 thuộc Ư(4)
+) \(\hept{\begin{cases}2x+1=1\\y-2=4\end{cases}}\) +) \(\hept{\begin{cases}2x+1=2\\y-x=2\end{cases}}\)
+) \(\hept{\begin{cases}2x+1=4\\y-2=1\end{cases}}\) +) \(\hept{\begin{cases}2x+1=-2\\y-2=-2\end{cases}}\)
+) \(\hept{\begin{cases}2x+1=-1\\y-2=-4\end{cases}}\) +) \(\hept{\begin{cases}2x+1=-4\\y-2=-1\end{cases}}\)
Còn lại rất dễ bạn tự làm tiếp nhé
Chú ý điều kiện x ; y nguyên nhé !!!!
Tích cho mk nhoa !!!!! ~~
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\)và \(2x+y>2x-y\)
Do đó \(2x+y=7\)và \(2x-y=1\). Vậy \(x=2,y=3\)
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)
\(\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)
Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)
\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)
\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)
\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)
\(x^2+2y^2+2xy-14y+49=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\)
Dấu '=' xảy ra khi y=7 và x=-7
Không tắt mấy bước trên được không í ạ