Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-xy=6x-5y-8\)
\(\Rightarrow x^2-xy-6x+5y+8=0\)
\(\Rightarrow\left(x^2-xy-x\right)-\left(5x-5y-5\right)+3=0\)
\(\Rightarrow x\left(x-y-1\right)-5\left(x-y-1\right)=-3\)
\(\Rightarrow\left(x-y-5\right)\left(x-1\right)=-3\)
Từ đó bạn tìm ước thì ra kết quả.Chúc bạn học tốt.
đặt \(x-y=k\)
\(x^2-xy=6x-5y-8\Rightarrow x\left(x-y\right)=x+\left(5x-5y\right)-8\Rightarrow xk=x+5\left(x-y\right)-8\)
\(\Rightarrow xk=x+5k-8\Rightarrow xk=x+5k-5-3\Rightarrow xk-x-5k+5=-3\)
\(\Rightarrow x\left(k-1\right)-5\left(k-1\right)=3\Rightarrow\left(x-5\right)\left(k-1\right)=3\Rightarrow x-5;k-1\inƯ\left(-3\right)=+-1;+-3\)
nếu \(x-5=1\Rightarrow x=6\)thì \(k-1=-3\Rightarrow k=-2\Rightarrow y=x-k=6-\left(-2\right)=8\)
nếu \(x-5=3\Rightarrow x=8\)thì \(k-1=-1\Rightarrow k=0\Rightarrow y=x-k=8-0=8\)
nếu \(x-5=-1\Rightarrow x=4\)thì \(k-1=3\Rightarrow k=4\Rightarrow y=x-k=4-4==0\)
nếu \(x-5=-3\Rightarrow x=2\)thì \(k-1=1\Rightarrow k=2\Rightarrow y=x-k=2-2=0\)
vậy (x;y)=(6;8) (8;8) (4;0) (2;0)
a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)
d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)
f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
vì 74 và 6x^2 chia hết cho 2 nên 5y^2 chia hết cho 2 suy ra y chia hết cho 2
Ta có: \(6x^2\ge0\Rightarrow5y^2\le74\Rightarrow y^2< 15< 16\Rightarrow y< 4\)
Mà y là số nguyên dương, y chia hết cho 2 => y=2, thay vào phương trình ta có:
\(6x^2=54\Rightarrow x^2=9\Rightarrow x=3\)(vì x là số nguyên dương)
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi
1.BĐT Cauchy
\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)
\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )
2.BĐT Bunhiacopxki
\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)
3.BĐT Mincopxki
\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)
4.BĐT Chebyshev
Với A>B, x>y thì
\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)
Vs 3 sô thì bên vế phải thay 2 bằng 3
5.BĐT Benuli
\(\left(1+h\right)^n\ge1+nh\)
6.BĐT Holder
Với a,b,c,x,y,z,m,n,p là sô thực dương
\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
7.BĐT Sơ-vác-sơ
\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)
12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)
14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )
15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)
16. \(a^2+b^2+c^2\ge ab+ac+bc\)
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(x^2-6x+y^2-10y-15\)
\(=x^2-6x+y^2-10y+9+25-49\)
\(=\left(x^2-6x+9\right)+\left(y^2-10y+25\right)-49\)
\(=\left(x-3\right)^2+\left(y-5\right)^2-49\ge-49\)
Vậy GTNN của bt là -49\(\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)
\(x^2-6x+y^2-10y-15\)\
\(=\left(x^2-9x+9\right)+\left(y^2-10y+25\right)-49\)
\(=\left(x-3\right)^2+\left(y-5\right)^2-49\)\(\ge49\)
vậy GTNN là 49
ông già noel
quà mà chúng ta nhận đc là của bố mẹ
***Ai thấy đúg thik k nhé
~.~,@.@