Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
y3=x3+x2+x+1
<=>y3=x2(x+1)+(x+1)
<=>y3=(x2+1)(x+1)
Do x,y đều là số nguyên
=>(x2+1)(x+1)=1.y3=y2.y
*)Nếu x2+1=1 x+1=y3
=>x=0 y=1(TM)
*)Nếu x2+1=y3 x+1=1<=>x=0 y=1(TM)
*)Nếu x2+1=y x+1=y2<=>(x2+1)2=x+1
<=>x4+2x2+1-x-1=0
<=>x4+2x2-x=0
<=>x3+2x-1=0
<=>x(x2+2)=1=1.1=(-1)(-1)
Thay x vào ta không tìm được x thỏa mãn nên trường hợp này loại
*)x2+1=y x+1=y2
=>(x+1)2=x2+1
<=>x2+2x+1-x2-1=0
<=>2x=0
<=>x=0=>y=1
Vậy x=0 y=1