Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời đây bạn:
Ta có:
x^2+xy=7
=>xx+xy=7
=>x(x+y)=7
Mà 7=1.7=(-1).(-7)
Nên ta có bảng sau:
x | 1 | 7 | -1 | -7 |
x+y | 7 | 1 | -7 | -1 |
y | 6 | -6 | -6 | 6 |
Thử lại ta có : Các cặp (x,y) thỏa mãn điều kiện đề bài là:(1:6);(7:-6);(-1;-6);(-7;6).
Do 103 là số nguyên tố nên không chia hết cho 2
Mà 32y chia hết cho 2 nên \(5x^2⋮̸2\)
Mà 5 lẻ nên \(x^2\) lẻ
Do đó \(x^2\equiv1\left(mod4\right)\)
Lại có \(32y\equiv0\left(mod4\right)\Leftrightarrow5x^2-32y\equiv1\left(mod4\right)\)
Mà \(103\equiv3\left(mod4\right)\)
Vậy PT vô nghiệm
\(\frac{8-3x}{x+3}\in Z\Leftrightarrow8-3x⋮x+3\Leftrightarrow8-3x+3x+9⋮x+3\Leftrightarrow17⋮x+3\Leftrightarrow x+3\in\left\{-1;1;-17;17\right\}\)
\(\Leftrightarrow x\in\left\{-4;-2;-20;14\right\}\)
\(\frac{8-3x}{x+3}=\frac{-3x-9+17}{x+3}=\frac{-3\left(x+3\right)+17}{x+3}=-3+\frac{17}{x+3}\)
Để biểu thức nguyên thì \(\frac{17}{x+3}\)nguyên
\(\Rightarrow17⋮x+3\) \(\Rightarrow x+3\varepsilonƯ\left(17\right)=\hept{ }-1;1;-17;17\)
Vậy x = \(-4;-2-20;14\)
Lời giải:
Nếu $p$ lẻ thì $p+3$ chẵn. Khi đó $p+3$ là nguyên tố khi $p+3=2$
$\Rightarrow p=-1$ (vô lý- loại)
Nếu $p$ chẵn thì $p+10$ chẵn. Khi đó $p+10$ là nguyên tố khi $p+10=2$
$\Rightarrow p=-8$ (vô lý - loại)
Vậy không tồn tại số nguyên tố $p$ thỏa mãn đề.