Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=|x-12|+|y+9|+1997\)
Để A nhỏ nhất thì |x-12| và |y+9| nhỏ nhất
Ta thấy |x-12| và |y+9| \(\ge\)0 \(\Rightarrow\)|x-12| = |y+9| = 0
\(\Rightarrow\)x = 12 và y = -9
\(B=\left(x^2-16\right)+|y-3|-2\)
Để B nhỏ nhất thì x2 - 16 và |y-3| nhỏ nhất.
Ta thấy x2 và |y-3| \(\ge\)0 \(\Rightarrow\)x2 = y-3 = 0
\(\Rightarrow x=0\) và y = 3
\(C=\dfrac{5x-19}{x-4}\Leftrightarrow\dfrac{5x-5\times4+1}{x-4}\Leftrightarrow5+\dfrac{1}{x-4}\)
Để C nhỏ nhất thì \(\dfrac{1}{x-4}\)nhỏ nhất \(\Leftrightarrow x-4\) lớn nhất
PS: x càng lớn càng tốt, không tìm được x đâu.
Để A = |x-12|+|y+9|+1997 có GTNN thì |x-12| và |y+9| có GTNN
Mà |x-12| và |y+9| \(\ge\)0 nên để |x-12| và |y+9| có GTNN
Thì |x-12| = 0 \(\Rightarrow\) x - 12 = 0 \(\Leftrightarrow\) x = 0 +12 = 12
và |y+9| = 0 \(\Rightarrow\) y + 9 = 0 \(\Leftrightarrow\) y = 0 + 9 = -9
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200
A=|x-12|+|y+9|+2017
Có:|x-12|>=0;|y+9|>=0
=>A>=0
=>để A đạt GTNN thì |x-12|+|y+9| nhỏ nhất
Mà |x-12|+|y+9| nhỏ nhất khi |x-12|+|y+9|=0
Suy ra: GTNN của a là 2017.
mình làm hộ bn câu A thôi
Ta có \(\left|x-12\right|\ge0\)
\(\left|y+9\right|\ge0\)
=> \(A\ge2017\)
Vậy A đạt GTNN là 2017 khi và chỉ khi x=12 và y=-9
\(B=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Vậy B đạt GTNN khi và chỉ khi \(\frac{1}{x-4}\) nhỏ nhất
=>x-4=-1
=>x=3
Vậy B đạt GTNN là 4 khi và chỉ khi x=3
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3