Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Vì mỗi số hạng trên là giá trị tuyệt đối nên \(\ge\) 0 \(\Rightarrow\) Không thể có trường hợp có 2 số đối nhau, số còn lại bằng 0
\(\Rightarrow\left|x-\frac{15}{8}\right|=0\) và \(\left|\frac{2015}{2016}-y\right|=0\) và \(\left|2007+z\right|=0\)
\(\Rightarrow x-\frac{15}{8}=0\) và \(\frac{2015}{2016}-y=0\) và \(2007+z=0\)
\(\Rightarrow x=\frac{15}{8}\) và \(y=\frac{2015}{2016}\) và \(z=\left(-2007\right)\)
\(\left|x-\frac{15}{8}\right|\ge0;\left|\frac{2015}{2016}-y\right|\ge0;\left|2007+z\right|\ge0\)
Vậy \(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|\ge0\)
\(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|=0\)
\(\Leftrightarrow\)\(\left|x-\frac{15}{8}\right|=0;\left|\frac{2015}{2016}-y\right|=0;\left|2007+z\right|=0\)
Vậy \(x=\frac{15}{8};y=\frac{2015}{2016};z=-2007\)
1. Vì \(\left(x+6\right)^2\ge0\forall x\); \(\left|y-\frac{1}{2}\right|\ge0\forall y\); \(\left|x+y+z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\ge0\)
mà \(\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)( đề bài )
\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}x+6=0\\y-\frac{1}{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\-6+\frac{1}{2}+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\z=\frac{11}{2}\end{cases}}\)
Vậy \(x=-6\); \(y=\frac{1}{2}\); \(z=\frac{11}{2}\)
2. \(B=\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2016\right)\left(2018-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2016< 0\\2018-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\2018< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\x>2018\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-2016\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\2018\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le2018\end{cases}}\Leftrightarrow2016\le x\le2018\)( thoả mãn )
Vậy \(minB=2\Leftrightarrow2016\le x\le2018\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Leftrightarrow\begin{cases}x-2016=0\\1008-\frac{1}{2}y=0\end{cases}\)\(\Leftrightarrow x=y=2016\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow\left|x-2016\right|=0\) và \(\left|1008-\frac{1}{2}y\right|=0\)
+) \(\left|x-2016\right|=0\Rightarrow x-2016=0\Rightarrow x=2016\)
+) \(\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow1008-\frac{1}{2}y=0\)
\(\Rightarrow\frac{1}{2}y=1008\)
\(\Rightarrow y=2016\)
Vậy \(x=y=2016\)