K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

mk chưa lên lớp 7

20 tháng 8 2017

Áp dụng tính chất: \(a^{2n}+b^{2m}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(2n và 2m là các số chẵn)

15 tháng 9 2021

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 6 2016

a)Nhận xét:

\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) nên tổng chúng bằng 0 khi cả 2 bằng 0

<=> \(x=0;y=-\frac{1}{10}\)

b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\) nên không tìm được giá trị x và y thoả mãn đề bài.

15 tháng 6 2016

a)Như ta đã thấy:

\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) Nên tổng trên = 0 khi 2 số hạng bằng 0

=> x=  0 và y = -1/10

b) vì: 

\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

16 tháng 8 2015

 \(\left(x-1\right)^2+\left(y-3\right)^2=0\)

mà  \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\)

nên để: \(\left(x-1\right)^2+\left(y-3\right)^2=0\) thì:

  \(x-1=y-3=0\Rightarrow x=1;y=3\)

 

16 tháng 8 2015

a)x-1=y-3=0

x=1 va y=3

b)2x-1/2=y+3/2=0

x=1/4 va y=-3/2

c)1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

29 tháng 9 2016

a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

Để dấu "=" xảy ra thì x = 0 , y = 1/10

b/ Tương tự.

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

30 tháng 11 2017

a, x = 0 ; y = 1/10

b, x = 10 ; y = 1/2 hoặc y = -1/2

k mk nha

30 tháng 11 2017

1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\)          (1)

Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y              (2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)

2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)

Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x

\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y

Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)

Vậy....

14 tháng 7 2015

Vì: \(Ix+\frac{1}{2}I\ge0\)

    \(Iy-\frac{3}{4}I\ge0\)

    \(Iz-1I\ge0\) 

Mà \(Ix+\frac{1}{2}I+Iy-\frac{3}{4}I+Iz-1I=0\)

=>  \(x+\frac{1}{2}=0\) và \(y-\frac{3}{4}=0\) và \(z-1=0\) 

<=> \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)

Vậy  \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)

phần B lm tương tự nha