Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)
=>x=-3; y=28; z=-60
b: 5/12=x/-72
=>x=-72*5/12=-6*5=-30
c: =>x+3=-5
=>x=-8
\(a,\left(2x-5\right)+17=6\\ \Rightarrow2x-5=-11\\ \Rightarrow2x=-6\\ \Rightarrow x=-3\\ b,10-2\left(4-3x\right)=-4\\ \Rightarrow2\left(4-3x\right)=14\\ \Rightarrow4-3x=7\\ \Rightarrow3x=-3\\ \Rightarrow x=-1\\ c,24:\left(3x-2\right)=-3\\ \Rightarrow3x-2=-8\\ \Rightarrow3x=-6\\ \Rightarrow x=-2\\ d,5-2x=-17+12\\ \Rightarrow5-2x=-5\\ \Rightarrow2x=10\\ \Rightarrow x=5\)
a: =>2x-5=-11
=>2x=-6
hay x=-3
b: =>2(4-3x)=14
=>4-3x=7
=>3x=-3
hay x=-1
c: =>3x-2=-8
=>3x=-6
hay x=-2
\(a,xy+3x-2y=11\\ \Rightarrow x\left(y+3\right)-2y-6=11-6\\ \Rightarrow x\left(y+3\right)-2\left(y+3\right)=5\\ \Rightarrow\left(x-2\right)\left(y+3\right)=5\)
Đến đây bạn lập bảng để tìm x, y nhé
\(b,\left(x-7\right)\left(x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\\\left\{{}\begin{matrix}x>7\\x< -3\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-3< x< 7\)
\(c,\left(x+5\right)\left(3x-12\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+5>0\\3x-12>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+5< 0\\3x-12< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-5\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -5\\x< 4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>4\\x< -5\end{matrix}\right.\)
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a,-4/7=x/21
-12/21 = x/21
x= -12
b,(x-3)/15=1/-5
x - 3 = -1/5 * 15
x - 3 = -3
x = 0
c,.(3x+8)/-12=-5/30
=> 3x + 8 = 2
=> 3x=-6
=>x=-2
a) \(18-\left(2x+5\right)=9\)
\(2x+5=18-9\)
\(2x+5=9\)
\(2x=9-5\)
\(2x=4\)
\(x=2\)
a) \(18-\left(2x+5\right)=9\)
\(\Rightarrow2x+5=18-9=9\)
\(\Rightarrow2x=9-5=4\Rightarrow x=4:2=2\)
b) \(23x-4=32\Rightarrow23x=32+4=36\Rightarrow x=\dfrac{36}{23}\)
c) \(\left(3x+2\right)^2=64\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
d) \(x\left(2x-12\right)=0\Rightarrow6x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Cần bổ sung điều kiện \(x;y\inℤ\)
a) \(\left(x-7\right)\left(xy+1\right)=9=1\cdot9=3\cdot3=\left(-1\right)\cdot\left(-9\right)=\left(-3\right)\cdot\left(-3\right)\)
Xét bảng :
Vì x,y thuộc Z nên ta có (x;y)={(8;1),(16;0),(-2;1),(4;-1)
b) \(\left(x+5\right)\left(3x-12\right)>0\)
TH1 : \(\hept{\begin{cases}x+5>0\\3x-12>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-5\\x>4\end{cases}\Leftrightarrow x>4}}\)
TH2 : \(\hept{\begin{cases}x+5< 0\\3x-12< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -5\\x< 4\end{cases}\Leftrightarrow x< -5}}\)
Vậy....