Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Ta co : 8(x-2014)2 = 25-y2
=> 8(x-2014)2 + y2 = 25 (*)
Voi moi \(y\in N\) ta co y2 \(\ge0\)
\(\Rightarrow8\left(x-2014\right)^2\le25\)
\(\Rightarrow\left(x-2014\right)^2\le\dfrac{25}{3}\)
Vi x\(\in N\)
\(\Rightarrow\left(x-2014\right)^2=0hoac\left(x-2014\right)^2=1\)
Neu\(\left(x-2014\right)^2=1\) thay vao(*) ta duoc;
8 . 1+ y2 =25
\(\Rightarrow25-8=y^2\)
17 = y2 (loai) (vi y \(\in N\))
Neu \(\left(x-2014\right)^2=0\) thay vao (*) ta duoc:
8 . 0 + y2 = 25
=> y2 = 25
=> y = 5 (vi y\(\in N\))
Khi do \(\left(x-2014\right)^2=0\)
=> x- 2014 = 0 => x = 2014
Vay x = 2014, y = 5
Sửa đề tí nha: \(8\left(2009-x\right)^2=25-y^2\)
Đặt \(t=x-2009\left(ĐK:t\in Z\right)\)
\(\Rightarrow8t^2=25-y^2\Rightarrow y^2\le25\)
Xét trường hợp 1: \(y^2=0\Rightarrow t^2=\frac{25}{8}\)( loại )
Xét trường hợp 2: \(y^2=4\Rightarrow t^2=\frac{21}{8}\)( loại )
Xét trường hợp 3: \(y^2=9\Rightarrow t^2=2\)( loại )
Xét trường hợp 4: \(y^2=16\Rightarrow t^2=\frac{9}{8}\)( loại )
Xét trường hợp 5: \(y^2=25\Rightarrow t^2=0\)( nhận ) \(\Rightarrow y=5;-5;x=2009\)
Vậy phương trình có nghiệm nguyên là ( 2009 , -5 ) ; ( 2009 , 5 )
Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25
(x + y + z)(x + y + z) = 25
(x + y + z) = 52 = (-5) 2
Bạn tự liệt kê x;y;z ra nha!
Ta có : x (x + y + z) = 2 (1)
y (x + y + z) = 25 (2)
z (x + y + z) = -2 (3)
=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)
=> (x + y + z) (x + y + z) = 25
=> (x + y + z)2 = 52 = (-5)2
* Nếu (x + y + z)2 = 52 => x + y + z = 5 (4)
Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)
Từ (2) và (4) => y . 5 = 25 => y = 5
Từ (30 và (4) => z . 5 = -2 => z = -2/5
* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5 (5)
Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)
Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài