Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như sai đề rồi bạn :
Có phải như thế này không :
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+y}\)
Ta có\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)
\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\dfrac{2x+2y+2z+1+2-3}{x+y+z}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Nên \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)
Ta lại có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=2\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)-z+1}{x}=\dfrac{\left(x+y+z\right)-y+2}{y}=\dfrac{\left(x+y+z\right)-z-3}{z}=2\)
\(\Rightarrow\dfrac{\dfrac{1}{2}-x+1}{x}=\dfrac{\dfrac{1}{2}-y+2}{y}=\dfrac{\dfrac{1}{2}-z-3}{z}=2\)
\(\Rightarrow\dfrac{\dfrac{3}{2}-x}{x}=\dfrac{\dfrac{5}{2}-y}{y}=\dfrac{-z-\dfrac{5}{2}}{z}=2\)
\(\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{3}{2}-x}{x}\\\dfrac{\dfrac{5}{2}-y}{y}\\\dfrac{-z-\dfrac{5}{2}}{z}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{2}-x\\2y=\dfrac{5}{2}-y\\2z=-z-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{5}{2}\end{matrix}\right.\)
Áp dụng tc dãy tỉ số bằng nhau ta có :
x+y+z = x/y+z+1 = y/z+x+1 = x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z = 1/2 ; x=1/2.(y+z+1) ; y = 1/2.(x+z+1) ; z = 1/2.(x+y-2)
=> x=y=1/2 và x=-1/2
Tk mk nha
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Mà đề bài cho:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=2\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\\x+y-3=2z\left(3\right)\\x+y+z=\dfrac{1}{2}\left(4\right)\end{matrix}\right.\)
Ta có:
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được:
\(\dfrac{1}{2}-x+1=2x\Rightarrow\dfrac{3}{2}=3x\Rightarrow x=\dfrac{1}{2}\)
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được:
\(\dfrac{1}{2}-y+2=2y\Rightarrow\dfrac{5}{2}=3y\Rightarrow y=\dfrac{5}{6}\)
\((*)\) \(x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-5}{6}\)
Vậy: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)