K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)

\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)

\(=3+\left|x-2\right|+\left|y-3\right|\)

\(\ge3\)

Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)

Vậy \(x=2;y=3\)

(x-1) + (x-2) + (x-3) + (x-4) = 3

(x+x+x+x) - (1+2+3+4) = 3

X x 4 - 10 = 3

X x 4 = 3 + 10

X x 4 = 13

x = 13 : 4

x = \(\frac{13}{4}\)

20 tháng 1 2021

ko có đáp án

 

8 tháng 12 2016

|x-1|+|y-2|+|z-3|=0

|x-1|+|y-2|+|z-3|=0

\(\left|x-1\right|\ge0;\left|y-2\right|\ge0;\left|z-3\right|=0\) nên |x-1|+|y-2|+|z-3| \(\ge0\)nên để biểu thức =0 

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

8 tháng 12 2016

nhận xét ta thấy

/x-1/ >=0

/y-2/>=0

/z-3/>=0

vậy /x-1/+/y-2/+/z-3/ >=0

dấu bằng xảy ra khi và chỉ khi

x-1=0

y-2=0

z-3=0

=> x=1, y=2, z=3