Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a,Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(x=30;y=21;z=69\)
b, Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)(*)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)
Áp dung t/c dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(x=42;y=63;z=36\)
Bài giải
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot10=30\\y=3\cdot7=21\\z=3\cdot23=69\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(30\text{ ; }21\text{ ; }69\right)\)
b, Ta có :
\(\frac{x}{2}=\frac{y}{3}\text{ }\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\text{ }\Rightarrow\text{ }\frac{y}{21}=\frac{z}{12}\)
\(\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=3\cdot14=42\\y=3\cdot21=63\\z=3\cdot12=36\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(42\text{ ; }63\text{ ; }36\right)\)
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Sửa đề \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=372\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) (1)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
Do đó :
\(\frac{x}{15}=6\Rightarrow x=6.15=90\)
\(\frac{y}{20}=6\Rightarrow y=6.20=120\)
\(\frac{z}{28}=6\Rightarrow z=6.28=168\)
Ta có:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)
\(\hept{\begin{cases}\frac{x}{15}=6\Rightarrow x=6.15=90\\\frac{y}{20}=6\Rightarrow y=6.20=120\\\frac{z}{28}=6\Rightarrow z=6.28=168\end{cases}}\)
Vậy \(x=90;y=120;z=168\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y+z}{14+21+12}=\frac{69}{47}\)
\(\frac{x}{14}=\frac{69}{47}\Rightarrow x=\frac{966}{47}\)
\(\frac{y}{21}=\frac{69}{47}\Rightarrow y=\frac{1449}{47}\)
\(\frac{z}{12}=\frac{69}{47}\Rightarrow z=\frac{828}{47}\)
Theo đề ra: \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{14}=\frac{y}{21}\) (1)
\(\frac{y}{7}=\frac{z}{4}\)=> \(\frac{y}{21}=\frac{z}{12}\) (2)
Từ (1) và (2) => \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\) và x + y + z = 69
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y+z}{14+21+12}=\frac{69}{47}\)
\(\frac{x}{14}=\frac{69}{47}=>x=\frac{69}{47}.14=\frac{966}{47}\)
\(\frac{y}{21}=\frac{69}{47}=>y=\frac{69}{47}.21=\frac{1449}{47}\)
\(\frac{z}{12}=\frac{69}{47}=>z=\frac{69}{47}.12=\frac{828}{47}\)
Vậy \(x=\frac{966}{47}\) , \(y=\frac{1449}{47}\), \(z=\frac{828}{47}\)