Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có :
\(2^x.3^{y+2}=12^y\)
\(\Rightarrow2^x.3^{y+2}=\left(2^2.3\right)^y\)
\(\Rightarrow2^x.3^{y+2}=2^{2y}.3^y\)
\(\Rightarrow2^x=2^{2y}\)và \(3^{y+2}=3^y\)
\(\Rightarrow x=2y\)và \(y+2=y\)(vô lý)
Vậy không có số x;y nào thỏa mãn
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)
Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)
Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)
Em làm tương tự với câu b, không hiểu gì thì hỏi anh
x = 2 ; y = 0
Vì \(26=5^2+1=5^2+12^0\)
=> \(\hept{\begin{cases}x=2\\y=0\end{cases}}\) là một cặp nghiệm thoả mãn pt