K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

Do 2x = 5y

=> x=5/2.y

Ta có: (x+y)3 + (x-y)3 = 2960

=> (5/2.y+y)3 + (5/2.y-y)3 = 2960

=>(7/2.y)3 + (3/2.y)3 = 2960

=> (7/2)3 . y3 + (3/2)3 . y3 = 2960

=> y3 . [(7/2)3 + (3/2)3] = 2960

=> y3 . (343/8 + 27/8) = 2960

=> y3 . 185/4 = 2960

=> y3 = 2960 : 185/4

=> y3 = 64 = 43

=> y = 4

=> x = 5/2.4 = 10

Vậy x = 10, y = 4

30 tháng 6 2016

Theo bài ra ,ta có

        2x=5y =>\(\frac{x}{5}=\frac{y}{2}\)

và  (x+y)3+(x-y)3=2960

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được 

    \(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}\)\(=\frac{2960}{370}=8\)

suy ra \(\frac{x}{5}=8\)\(=>x=8.5=40\)

          \(\frac{y}{2}=8=>y=8.2=16\)

22 tháng 10 2016

Bài 1:Ta có:

\(\left(x-y\right)^2+\left(x+y\right)^2=50\)

\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)

Áp dụng tc dãy tỉ số ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)

\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)

Bài 2:Ta có:

\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)

\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)

Áp dụng tc dãy tỉ số ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)

\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)

 

22 tháng 10 2016

2 bài hả bn

V
14 tháng 7 2017

\(\frac{x}{5}=\frac{y}{-3}\) áp dụng t/c dãy TSBN =>\(\frac{x}{5}=\frac{y}{-3}=\frac{x^2+y}{5^2+\left(-3\right)}=\frac{34}{22}=\frac{17}{11}\)

\(\frac{x^2}{5^2}=\frac{17}{11}\Rightarrow x=....\)

\(\frac{y}{-3}=\frac{17}{11}\Rightarrow y=...\) cậu tự lm nhé

V
14 tháng 7 2017

2) đặt \(\frac{x}{4}=\frac{y}{5}=k\)  ta có \(\hept{\begin{cases}x=4k\\y=5k\\\end{cases}}\)\(\Rightarrow\)x.y=4k.5k=20

                                                                         => x.y=\(20.k^2\)=20

                                                                         =>\(k^2\)=1=>k=1

=>x=4k=4.1=4

y=5k=5.1=5

20 tháng 11 2020

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

24 tháng 7 2019

1.A.0.96

24 tháng 7 2019

Câu a tự làm nhé

b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)

\(\Leftrightarrow32(2x+3)=24(3x-1)\)

\(\Leftrightarrow64x+96=72x-24\)

\(\Leftrightarrow64x+96-72x=-24\)

\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)

AH
Akai Haruma
Giáo viên
23 tháng 6 2021

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{3x}{2}=\frac{4y}{5}=\frac{6z}{7}$

$\Rightarrow \frac{x}{\frac{2}{3}}=\frac{y}{\frac{5}{4}}=\frac{2z}{\frac{7}{3}}$

$=\frac{x-y-2z}{\frac{2}{3}-\frac{5}{4}-\frac{7}{3}}=\frac{-45}{\frac{-35}{12}}=\frac{108}{7}$

$\Rightarrow x=\frac{108}{7}.\frac{2}{3}=\frac{72}{7};y=\frac{135}{7}; z=18$

31 tháng 10 2021

Cho em hỏi là tính như nào ra được \(\dfrac{\text{108}}{\text{7}}\) vậy ạ?

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank