Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{x-1}{1995}+1-1-\frac{x+3}{1991}=\frac{x+7}{1987}+1-1-\frac{x+11}{1983}\)
=> \(\left(\frac{x-1}{1995}+1\right)-\left(1+\frac{x+3}{1991}\right)=\left(\frac{x+7}{1987}+1\right)-\left(1+\frac{x+11}{1983}\right)\)
=> \(\frac{x+1994}{1995}-\frac{x+1994}{1991}=\frac{x+1994}{1987}-\frac{x+1994}{1983}\)
=> \(\left(x+1994\right)\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)=0\)
=>x + 1994 = 0 Vì \(\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)\ne0\)
=> x = -1994
P/s: Chuyển tất cả các hạng tử sang 1 vế rồi cộng thêm 1 vào các vế có dấu (+) đằng trước, cộng thêm -1 vào các hạng tử có dấu (-) phía trước rồi đặt nhân tử chung ra ngoài ta được:
\(Pt\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1979}-\frac{1}{1980}-\frac{1}{1981}-\frac{1}{1982}-\frac{1}{25}+\frac{1}{24}+\frac{1}{23}+\frac{1}{22}\right)=0\)
\(\Leftrightarrow x-2004=0\)
\(\Rightarrow x=2004\)
Vậy x = 2004
https://olm.vn/hoi-dap/detail/263823966145.html?pos=616279814817
Ta có : \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
=> \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1989}{1991}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{x+1}=\frac{1}{1991}\)
=> x + 1 = 1991
=> x = 1990
Vậy x = 1990
\(2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{1990}{1991}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1990}{1991}\)
\(1-\frac{1}{x+1}=\frac{1990}{1991}\)
\(\frac{1}{x+1}=1-\frac{1990}{1991}\)
\(\frac{1}{x+1}=\frac{1}{1991}\)
\(x+1=1991\)
\(x=1990\)
A=1-2-3 +4+5-6-7+8 +.....+1993
\(A=A_1+1993\)
\(A_1=\left(1-2-3+4\right)+\left(5-6-7+8\right)+....+\left(1989-1990-1991+1992\right)\)\(A_1=0+0+0...+0\)
A=1993
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)