Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
a, (x-2)(3x+5)=(2x-4)(x+1)
<=> (x-2)(3x+5)-2(x-2)(x+1)=0
<=>(x-2)(3x+5-2x-2)=0
<=>(x-2)(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(4\left(x-3\right)-8x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(4-8x\right)=0\\ \Leftrightarrow2\left(1-2x\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ 5x\left(x-7\right)-10\left(7-x\right)=0\\ \Leftrightarrow\left(x-7\right)\left(5x+10\right)=0\\ \Leftrightarrow5\left(x+2\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\\ 2x-8=3x\left(x-4\right)\\ \Leftrightarrow2\left(x-4\right)-3x\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2-3x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\\ 3x\left(x-5\right)=10-2x\\ \Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\\ \Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=5\end{matrix}\right.\\ 6x\left(x-3\right)-3\left(3-x\right)=0\\ \Leftrightarrow\left(6x+3\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
\(x^2\left(x+4\right)+9\left(-x-4\right)=0\\ \Leftrightarrow\left(x^2-9\right)\left(x+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-4\end{matrix}\right.\)
\(\left(4-8x\right)\left(x-3\right)=0\)
\(\left[{}\begin{matrix}4-8x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\3\end{matrix}\right.\)
\(2\left(x-4\right)-3x\left(x-4\right)=0\)
\(\left(2-3x\right)\left(x-4\right)=0\)
\(\left[{}\begin{matrix}2-3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)
a) với a = -2 ta được phương trình:
3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3
<=> 3.(-4x) - 4.(x - 1) = (-8) + 3
<=> -12x - 4(x - 1) = -5
<=> -12x - 4x + 4 = -5
<=> -16x + 4 = -5
<=> -16x = -5 - 4
<=> -16x = -9
<=> x = 9/16
b) để x = 1, ta có:
3.(a - 2).1 + 2a(1 - 1) = 4a + 3
<=> 3(a - 2) + 0 = 4a + 3
<=> 3a - 6 = 4a + 3
<=> 3a - 6 - 4a = 3
<=> -a - 6 = 3
<=> -a = 3 + 6
<=> a = -9
\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(x+2\right)\)
\(\Rightarrow x.\left(x+4\right)+\left(x+4\right)=x\left(2-x\right)+2\left(2-x\right)\)
\(\Rightarrow x^2+4x+x+4=2x-x^2+4-2x\)
\(\Rightarrow x^2+5x+4+x^2-4=0\)
\(\Rightarrow x^2+5x+x^2=0\)
\(\Rightarrow x\left(x+5+x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+5+x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\frac{-5}{2}\end{matrix}\right.\)
a) \(16x^2-1=0\)
\(\Rightarrow16x^2=1\)
\(\Rightarrow x^2=\frac{1}{16}\)
\(\Rightarrow x^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{4}\\\frac{-1}{4}\end{cases}}\)
b) \(x^2+\frac{1}{4}=0\)
Ta có: \(x^2\ge0\forall x\Rightarrow x^2+\frac{1}{4}\ge\frac{1}{4}>0\)
=> Vô nghiệm
c) \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x+1=0\Rightarrow x=-1\)
Trường hợp 3: \(x+3=0\Rightarrow x=-3\)
(x-1)(x+2)=x+2
=>x-1=1
=>x=2
Ta có:
\(\left(x-1\right)\left(x+2\right)-x-2=0\)
\(\Leftrightarrow x^2+x-2-x-2=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x+2=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-2\)hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;2\right\}\)